I thought, I'll check my matrix-method and compare, what happens, if I used different fixpoints for initialization.
I used s=sqrt(2) as base-parameter, because of simpliness of the two fixpoints t1 =2 and t2=4
This is the reference matrix CHK = Bs , based on s=sqrt(2). It is constructed the simple method by
Bs = dV(log(s)) * B
CHK = Bs
and the terms of the second column, taken as coefficients for powers of x give the series for
s^x = sum {r=0,inf} log(s)^r / r! * x^r
or, iterated
s^s^x = sum {r=0,inf} log(s)^r / r! * (s^x)^r
------------------------------------------------------------------------
------------------------------------------------------------------------
This matrix should also result by my analytic matrix-composition whatever initial fixpoint I use.
My parameters for composition are
s : the base, here s = sqrt(2)
t=h(s) : one of its fixpoints, such that s = t^(1/t), here I use 2 and 4 as examples
tl = log(t), principal branch
I compose Bs analytically by its eigensystem
Bs = W * D * W^-1
where D is diagonal diag(tl^0,tl^1,tl^2,...)
and W may have complex entries, if the fixpoint is complex.
Furthermore, I construct W and W^-1 by the composition
W = dV(1/t) *(P^-1)~ * X
W^-1 = X^-1 * P~ * dV(t)
where P is the pascal-matrix and X is triangular.
and compute X^-1 by my analytical description using the parameters t and tl, and then X by (X^-1) numerical inversion.
Note, that in
W = dV(1/t) *(P^-1)~ * X
we may have divergent summation, which is numerically problematic, although I use Euler-summation, but only the same order for all implicite vectorial products (I'll have to improve that...).
But it seems, that my procedure overcame this problem, anyway, the errors seem to cancel out nicely.
Only few rows and columns are displayed in the following. I used matrix-dimension 24 and 32, float-precision 200 digits
A) Construction using Fixpoint 4 =============================================
(t=4, tl=log(4), s=t^(1/t) = sqrt(2)
APT_Init1(tl,t,s,24)
The eigenmatrices:
and the completely composed matrix Bs:
Compare with chk:
================================================================================
B) Construction using Fixpoint 2 =============================================
(t=2, tl=log(t), s=t^(1/t) = sqrt(2)
APT_Init1(tl,t,s,24)
The Eigenmatrices
The composed matrix
Compare
================================================================================
Different eigensystems compose the same tetration-matrix Bs; hmm.
The different fixpoints are reflected in the first row of W^-1 . This is necessarily so, since by the eigen-composition
Bs = W * D * W^-1
we have
W^-1 * Bs = D * W^-1
and for the first row of W^-1, associated with the first eigenvalue e0=1 , this means that it remains unchanged by right-multiplication with Bs, which is just the property of the (powerseries of the) fixpoint.
Gottfried
I used s=sqrt(2) as base-parameter, because of simpliness of the two fixpoints t1 =2 and t2=4
This is the reference matrix CHK = Bs , based on s=sqrt(2). It is constructed the simple method by
Bs = dV(log(s)) * B
CHK = Bs
and the terms of the second column, taken as coefficients for powers of x give the series for
s^x = sum {r=0,inf} log(s)^r / r! * x^r
or, iterated
s^s^x = sum {r=0,inf} log(s)^r / r! * (s^x)^r
------------------------------------------------------------------------
Code:
chk =
1 1 1 1
0 0.346573590280 0.693147180560 1.03972077084
0 0.0600566267398 0.240226506959 0.540509640658
0 0.00693801358310 0.0555041086648 0.187326366744
0 0.000601133069227 0.00961812910763 0.0486917786074
0 0.0000416673692076 0.00133335581464 0.0101251707174
0 0.00000240680162397 0.000154035303934 0.00175455838387
0 0.000000119161982844 0.0000152527338041 0.000260607256480
This matrix should also result by my analytic matrix-composition whatever initial fixpoint I use.
My parameters for composition are
s : the base, here s = sqrt(2)
t=h(s) : one of its fixpoints, such that s = t^(1/t), here I use 2 and 4 as examples
tl = log(t), principal branch
I compose Bs analytically by its eigensystem
Bs = W * D * W^-1
where D is diagonal diag(tl^0,tl^1,tl^2,...)
and W may have complex entries, if the fixpoint is complex.
Furthermore, I construct W and W^-1 by the composition
W = dV(1/t) *(P^-1)~ * X
W^-1 = X^-1 * P~ * dV(t)
where P is the pascal-matrix and X is triangular.
and compute X^-1 by my analytical description using the parameters t and tl, and then X by (X^-1) numerical inversion.
Note, that in
W = dV(1/t) *(P^-1)~ * X
we may have divergent summation, which is numerically problematic, although I use Euler-summation, but only the same order for all implicite vectorial products (I'll have to improve that...).
But it seems, that my procedure overcame this problem, anyway, the errors seem to cancel out nicely.
Only few rows and columns are displayed in the following. I used matrix-dimension 24 and 32, float-precision 200 digits
A) Construction using Fixpoint 4 =============================================
(t=4, tl=log(4), s=t^(1/t) = sqrt(2)
APT_Init1(tl,t,s,24)
Code:
X=
1 0 0 0
0 1 0 0
0 -1.79434972478 1.79434972478 3.236949254E-194
0 3.39342592088 -6.43938186964 3.04595594876
0 -6.53979952045 17.9552372772 -16.3965306551
0 12.7228628576 -45.3209402902 60.4297878795
0 -24.8909724939 108.433343624 -188.637901738
0 48.8779300721 -250.895176969 535.783894633
D = diag(
1
1.38629436112
1.92181205567
2.66419721591
3.69336157733
5.12008632823
7.09794680527
9.83984363168
)
X^-1 =
1 . . .
0 1 . .
0 1 0.557304959111 .
0 1 1.17818494749 0.328304156994
0 1 1.86938951398 1.08069640221
0 1 2.63817091372 2.37347688706
0 1 3.49231192153 4.34693229384
0 1 4.44015854200 7.16930292361
The eigenmatrices:
Code:
W = (questionable due to divergent summation in computation of entries)
1.00000000000 -705146.375907 10061636.1490 -68537708.6133
0 3489389.51207 -50276479.5673 345593823.396
0 -8286390.34681 120465028.795 -835106222.017
0 12559030.2520 -184103274.475 1286494011.00
0 -13630974.9241 201383129.397 -1417931872.62
0 11269155.8714 -167724501.261 1189493061.90
0 -7370028.22071 110466238.936 -788853148.479
0 3908997.17173 -58986047.0304 424035285.025
0 -1710236.53780 25974624.1942 -187925954.460
0 624480.079318 -9543783.34494 69478898.2726
0 -191804.578207 2949043.40534 -21598718.7055
0 49793.5937275 -770081.778535 5673170.37787
0 -10950.8376873 170326.013172 -1261963.18919
0 2040.06459378 -31906.8402260 237720.549789
0 -321.147009511 5050.00587604 -37830.1150461
0 42.5064378702 -671.951323793 5060.53629729
W^-1 = (see the reflection of the fixpoint in first row)
1 4 16 64 256 1024
0 4 32 192 1024 5120
0 4 40.9168793458 299.002552149 1880.02041719 10826.8027813
0 4 50.8509591599 439.222975966 3169.87553611 20546.4484299
0 4 61.9102322236 620.087356425 5053.40975295 36356.7666541
0 4 74.2107346195 850.431336206 7738.67988445 61208.7538347
0 4 87.8769907445 1140.72755574 11494.5329580 99241.7940545
0 4 103.042536672 1503.34582718 16666.0898919 156199.665184
0 4 119.850522634 1952.85063934 23693.7469193 239976.475820
0 4 138.454392309 2506.34113631 33136.4265599 361329.444672
0 4 159.018634839 3183.83930575 45699.9515027 534805.127091
0 4 181.719604981 4008.73276953 62271.5816187 779937.761743
0 4 206.746407269 5008.27930299 83961.9507878 1122793.40038
0 4 234.301841121 6214.18103467 112155.871364 1597952.06203
0 4 264.603405272 7663.23720718 148573.745782 2251043.13061
0 4 297.884361368 9398.08542413 195345.643872 3141977.57828
Code:
BS = W*D*W^-1
1.00000000000 1.00000000000 1.00000000000 1.00000000000
0 0.346573590280 0.693147180560 1.03972077084
0 0.0600566267398 0.240226506959 0.540509640658
0 0.00693801358310 0.0555041086648 0.187326366743
0 0.000601133069227 0.00961812910763 0.0486917786092
0 0.0000416673692076 0.00133335581464 0.0101251707171
0 0.00000240680162397 0.000154035303932 0.00175455838251
0 0.000000119161982842 0.0000152527338064 0.000260607257382
Code:
chk =
1 1 1 1
0 0.346573590280 0.693147180560 1.03972077084
0 0.0600566267398 0.240226506959 0.540509640658
0 0.00693801358310 0.0555041086648 0.187326366744
0 0.000601133069227 0.00961812910763 0.0486917786074
0 0.0000416673692076 0.00133335581464 0.0101251707174
0 0.00000240680162397 0.000154035303934 0.00175455838387
0 0.000000119161982844 0.0000152527338041 0.000260607256480
B) Construction using Fixpoint 2 =============================================
(t=2, tl=log(t), s=t^(1/t) = sqrt(2)
APT_Init1(tl,t,s,24)
Code:
X=
1 0 0 0
0 1 0 0
0 1.12944567664 -1.12944567664 -1.473607464E-196
0 1.19858472554 -2.55129507294 1.35271034740
0 1.24745912391 -4.14824726765 4.58343856085
0 1.28563007597 -5.87581793333 10.0407587481
0 1.31707187412 -7.70930267379 17.9985821965
0 1.34390534108 -9.63260543481 28.6872598916
D=diag(
1
0.693147180560
0.480453013918
0.333024651989
0.230835098583
0.160002697757
0.110905418832
0.0768737783725
)
X^-1
1 . . .
0 1 . .
0 1 -0.885390081778 .
0 1 -1.66990025441 0.739256561405
0 1 -2.36595087773 2.01369042283
0 1 -2.98470320802 3.66529728561
0 1 -3.53611631924 5.57317309542
0 1 -4.02901260446 7.64597311973
The Eigenmatrices
Code:
W= (the implicite summation due to vectorproducts is convergent here)
1.00000000000 -0.455962801825 -0.234814101634 -0.128231007102
0 0.0983187801477 0.101265436309 0.0829509522811
0 0.0304091151843 0.0204026096323 0.00776935638663
0 0.00825961118386 0.00175355081901 -0.00281012813971
0 0.00216911546942 -0.000644677201669 -0.00169340744299
0 0.000562477735004 -0.000469774810429 -0.000550860865246
0 0.000144695356452 -0.000201904229153 -0.000130846641810
0 0.0000370240728932 -0.0000732383771608 -0.0000128640201235
0 0.00000943358845693 -0.0000238649227543 -0.0000129727419446
0 0.00000241175018837 -0.00000861154790223 0.0000422504430010
0 0.000000581709580799 -0.000000122411796083 -0.0000825732852465
0 0.000000207755871710 -0.00000489124349097 0.000159345857287
0 -0.0000000528566347196 0.00000687141685920 -0.000260121747386
0 0.000000148437431700 -0.0000104743725876 0.000375063362779
0 -0.000000181557806492 0.0000134996273957 -0.000475016406556
0 0.000000216378004102 -0.0000154711877332 0.000530629958372
W^-1 =(see again the reflection of the used fixpoint in the first row)
1 2 4 8 16 32
0 2 8 24 64 160
0 2 4.45843967289 2.75063803733 -20.9974478507 -123.324826169
0 2 1.32039898237 -10.1635536145 -48.9980044932 -137.805981761
0 2 -1.46380351094 -16.6732976830 -43.7639053514 -47.8114270701
0 2 -3.93881283208 -18.3104987076 -21.5532162896 56.6576374180
0 2 -6.14446527695 -16.2814068984 6.80218701173 132.051592175
0 2 -8.11605041784 -11.5285175492 34.3368653819 162.669701386
0 2 -9.88460902634 -4.78251972225 56.7947041603 148.542098335
0 2 -11.4772621111 3.39451450481 71.7814561860 97.7532147986
0 2 -12.9175616969 12.5735922704 78.1526668904 21.7500514052
0 2 -14.2258516379 22.4298721260 75.5782437643 -67.3871580389
0 2 -15.4196265145 32.7193707710 64.2377859836 -158.417173279
0 2 -16.5138780006 43.2604036860 44.6113289218 -241.630000643
0 2 -17.5214203670 53.9189447244 17.3386826132 -309.075022032
0 2 -18.4531894090 64.5971838286 -16.8726754476 -354.528979793
Code:
Bs= W * D * W^-1
1.00000000000 1.00000000000 1.00000000000 1.00000000000
0 0.346573590280 0.693147180560 1.03972077084
0 0.0600566267398 0.240226506959 0.540509640658
0 0.00693801358310 0.0555041086648 0.187326366744
0 0.000601133069225 0.00961812910761 0.0486917786076
0 0.0000416673692068 0.00133335581466 0.0101251707175
0 0.00000240680162443 0.000154035303952 0.00175455838364
0 0.000000119161983188 0.0000152527338009 0.000260607256418
Code:
chk =
1 1 1 1
0 0.346573590280 0.693147180560 1.03972077084
0 0.0600566267398 0.240226506959 0.540509640658
0 0.00693801358310 0.0555041086648 0.187326366744
0 0.000601133069227 0.00961812910763 0.0486917786074
0 0.0000416673692076 0.00133335581464 0.0101251707174
0 0.00000240680162397 0.000154035303934 0.00175455838387
0 0.000000119161982844 0.0000152527338041 0.000260607256480
Different eigensystems compose the same tetration-matrix Bs; hmm.
The different fixpoints are reflected in the first row of W^-1 . This is necessarily so, since by the eigen-composition
Bs = W * D * W^-1
we have
W^-1 * Bs = D * W^-1
and for the first row of W^-1, associated with the first eigenvalue e0=1 , this means that it remains unchanged by right-multiplication with Bs, which is just the property of the (powerseries of the) fixpoint.
Gottfried
Gottfried Helms, Kassel