Code to calculate tetration using my method
#1
This is the python code I've made to easily calculate tetration using my method. It calculates x^^(a+bi) for all a, b real (except a whole and below -2) and for all x greater that e^-e. It might not be 100% precise, and maybe some mistakes, but it overall works.
To calculate, it's tetra(x,a,b) for x^^(a+bi)


from math import*

def mod(a,b):
    A=(a**2+b**2)**0.5
    return A
def Arg(a,b):
    Z=atan2(b,a)
    return Z
def fn(a,n):
    X=0
    while n+1>0:
        n=n-1
        X=a**X
    return X
def logan(X,Y,a,n):
    while n>0:
        M=mod(X,Y)
        A=Arg(X,Y)
        X=log(M,a)
        Y=(A)/log(a,e)
        n=n-1
    return X,Y
def TAU(X):
    n=0
    a=1
    while n<400:
        a=X**a
        n=n+1
    return a
def LAMBDA(X):
    a=log(X,e)*TAU(X)
    return a
def lpr(x,p,b):
    X=LAMBDA(x) 
    if X>=0:
        A=(X**p)*cos(log(X,e)*b)
    else:
        A=e**(log(-X,e)*p-pi*b)*cos(log(-X,e)*b+p*pi)
    return A
def lpi(x,p,b):
    X=LAMBDA(x) 
    if X>=0:
        A=(X**p)*sin(log(X,e)*b)
    else:
        A=e**(log(-X,e)*p-pi*b)*sin(log(-X,e)*b+p*pi)
    return A
def entier(X):
    X=floor(X)
    return X
def decimal(X):
    a=entier(X)
    b=X-a
    return b
def Nu(X):
    n=0 
    a=fn(X,n)
    b=TAU(X)
    while ((a-b)**2)**0.5>0.0001:
        n=n+1
        a=fn(X,n)
    return n
def tetraa(X,a,b):
    E=entier(a)
    D=decimal(a)
    N=Nu(X)
    A=fn(X, N+E)-TAU(X)
    B=(A*(lpr(X, D,b)))+TAU(X)
    C=(A*(lpi(X, D,b))) 
    O=logan(B,C,X,N)
    return O
def BIGn(X):
    n=X
    a=1
    if 3.9<X<5:
      X=X**X
      a=2
    else:
      while X-3000<0:
          X=n**X
          a=a+1
    return a
def BIGx(X):
    n=X
    if 3.9<X<5:
      X=X**X
    else:
      while X-3000<0:
          X=n**X
    return X
def logwan(X,a,n): 
    while n>0:
        X=log(X+1,a)
        n=n-1
    return X
def PUr(X,a,b,n):
    while n>0:
        A=(X**a)*cos(log(X,e)*b)
        B=(X**a)*sin(log(X,e)*b)
        a=A
        b=B
        n=n-1
    return a
def PUi(X,a,b,n):
    while n>0:
        A=(X**a)*cos(log(X,e)*b)
        B=(X**a)*sin(log(X,e)*b)
        a=A
        b=B
        n=n-1
    return b
def Gn(a,b,X,n):
    while n>0:
        A=(X**a)*cos(log(X,e)*b)-1
        B=(X**a)*sin(log(X,e)*b)
        a=A
        b=B
        n=n-1
    return a,b
def lim(X):
    A=BIGx(X)
    if X<e:
        b=logwan(A,X,400)
    else:
        b=0
    return b
def gamma(X):
    A=(lim(X)+1)*log(X,e)
    return A
def NA(X):
    A=BIGx(X)
    B=lim(X)
    n=0
    while ((A-B)**2)**0.5>10**(-6):
        n=n+1
        A=logwan(A,X,1)
    return n
def fin(X,p,b):
    E=decimal(1-decimal(p))
    Z=entier(p)
    A=BIGx(X)
    B=logwan(A,X,NA(X))
    C=B-lim(X)
    D=(C/(gamma(X)**E)*cos(log(gamma(X),e)*b))+lim(X)
    W=(C/(gamma(X)**E)*sin(log(gamma(X),e)*b))
    F,U=Gn(D,W,X,NA(X))
    Y=BIGn(X)-E-p
    if Y>=0:
        O=logan(F,U,X,Y)
    else:
        O=PUr(F,U,X,-Y),PUi(F,U,X,-Y)
    return O
def tetra(X,n,b):
    if X==1:
      Z=(1,0)
    elif n<=-2 and n==int(n) and b==0:
      Z="ERROR" 
    elif n>=-1 and decimal(n)<=0 and b==0:
      Z=fn(X,n) 
    else:
      if e**(-e)<=X<=e**(1/e):
        Z=tetraa(X,n,b)
      elif X>e**(1/e):
        Z=fin(X,n,b)
      else:
        Z="ERROR"
    return Z
Reply
#2
I use Python 3.11 x64 for Windows 10 and I tried to run your code... but I got errors:
Code:
Python 3.11.4 (tags/v3.11.4:d2340ef, Jun  7 2023, 05:45:37) [MSC v.1934 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> from math import*
>>>
>>> def mod(a,b):
...     A=(a**2+b**2)**0.5
...     return A
... def Arg(a,b):
  File "<stdin>", line 4
    def Arg(a,b):
    ^^^
SyntaxError: invalid syntax
>>>     Z=atan2(b,a)
  File "<stdin>", line 1
    Z=atan2(b,a)
IndentationError: unexpected indent
>>>     return Z
  File "<stdin>", line 1
    return Z
IndentationError: unexpected indent
>>> def p(x):
...   a=x
...   while a<0:
...     a=a+1
...   return a
... def fn(a,n):
  File "<stdin>", line 6
    def fn(a,n):
    ^^^
SyntaxError: invalid syntax
...

What's your version of Python for no any errors?
Reply
#3
Try to add juxtapose and variable integer (toward the bottom by carry sum) and a function int just to be safe
Reply
#4
(10/10/2023, 05:18 AM)leon Wrote: Try to add juxtapose and variable integer (toward the bottom by carry sum) and a function int just to be safe

I did the code on my calculator, I just noticed I did errors when copying it in here.
Whell I'll get home, I'll fix it.
Regards

Shanghai46
Reply
#5
(07/31/2023, 03:53 PM)nuninho1980 Wrote: I use Python 3.11 x64 for Windows 10 and I tried to run your code... but I got errors:
Code:
Python 3.11.4 (tags/v3.11.4:d2340ef, Jun  7 2023, 05:45:37) [MSC v.1934 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> from math import*
>>>
>>> def mod(a,b):
...     A=(a**2+b**2)**0.5
...     return A
... def Arg(a,b):
  File "<stdin>", line 4
    def Arg(a,b):
    ^^^
SyntaxError: invalid syntax
>>>     Z=atan2(b,a)
  File "<stdin>", line 1
    Z=atan2(b,a)
IndentationError: unexpected indent
>>>     return Z
  File "<stdin>", line 1
    return Z
IndentationError: unexpected indent
>>> def p(x):
...   a=x
...   while a<0:
...     a=a+1
...   return a
... def fn(a,n):
  File "<stdin>", line 6
    def fn(a,n):
    ^^^
SyntaxError: invalid syntax
...

What's your version of Python for no any errors?
I made errors when transcribing the code from my calculator to here, I'll fix it in a few hours
Regards

Shanghai46
Reply
#6
(06/02/2023, 08:33 AM)Shanghai46 Wrote: This is the python code I've made to easily calculate tetration using my method. It calculates x^^(a+bi) for all a, b real (except a whole and below -2) and for all x greater that e^-e. It might not be 100% precise, and maybe some mistakes, but it overall works.
To calculate, it's tetra(x,a,b) for x^^(a+bi)

It is corrected! There shouldn't be any more issues.
Regards

Shanghai46
Reply
#7
I asked ChatGTP to add the docstrings (which I edited, but I have no clue what this code does)

Fixed the tabulation error.

I suggest to use math.complex instead of the real and imaginary parts

I added some "TODO:" labels 

Code:
# This code uses Shanghai46 method for calculation of tetration as described in
# TODO: fix link
# https://tetrationforum.org/search.php?action=results&sid=afae76cdf0119ae9ab1587cdd6166152&sortby=dateline&order=desc&uid=0
#
#Call tree
# tetra
# ├── fn <-- n is integer
# ├── tetraa <-- e^-e < X < e^(1/e)
# │   ├── entier
# │   ├── decimal
# │   ├── Nu
# │   ├── fn
# │   ├── TAU
# │   ├── LPr
# │   ├── LPi
# │   └── logan
# └── fin <-- e^(1/e) < X
#     ├── decimal
#     ├── entier
#     ├── logwan
#     ├── lim
#     ├── NA
#     ├── BIGx
#     ├── gamma
#     ├── Gn
#     ├── BIGn
#     ├── logan
#     ├── PUr
#     └── PUi
from math import *
import numpy as np


def mod(a, b):
    # TODO this function is unnecessary, because is equivalent to abs(math.complex(a,b))
    """Calculates the modulus of a and b.

    Args:
        a: A number.
        b: A number.

    Returns:
        The modulus of a and b.
    """

    # A = (a**2 + b**2) ** 0.5
    # return A
    return abs(complex(a, b))


def Arg(a, b):
    # TODO this function is unnecessary, because is equivalent to np.angle(math.complex(a,b))
    """Calculates the argument of a and b.

    Args:
        a: A number.
        b: A number.

    Returns:
        The argument of a and b.
    """

    # Z = atan2(b, a)
    # return Z
    return np.angle(complex(a, b))


def p(x):
    """returns x when x is positive,
       or the fractional part of x, when x is negative

    Args:
        x: A number.

    Returns:
        If x is positive, the function returns x.
        If x is negative, the function returns the fractional part of x.
    """

    # a = x
    # while a < 0:
    #     a = a + 1
    # return a
    return x if x >= 0 else x % 1


def fn(a, n):
    """Calculates the tetration of a to the power of n.

    Args:
        a: A number.
        n: A number.

    Returns:
        The repeated power of a, n times
    """

    # X = 0
    # while n + 1 > 0:
    #     n = n - 1
    #     X = a**X
    # return X

    result = 1
    for i in range(n):
        result = a**result
    return result


def logan(X, Y, a, n):
    """Calculates the n-iterated logarithm of X in base a.

    Args:
        X: A number.
        Y: A number.
        a: A number.
        n: A number.

    Returns:
        a tuple of real numbers:
        The real, and the imaginary part of:
            The n-iterated logarithm of X in base a.
    """

    result = complex(X, Y)
    for i in range(n):
        result = log(result, a)

    return result.real, result.imag


def TAU(X):
    """Calculates the TAU function of X.

    Args:
        X: A number.

    Returns:
        The TAU function of X.
    """
    # TODO: Is this a limit for long tetrations?
    # It will rapidly overflow
    # maybe is better to check the radius of convergence and calcualte the limit using the known functions.

    # n = 0
    # a = 1
    # while n < 400:
    #     a = X**a
    #     n += 1
    # return a
    a = 1
    for i in range(400):
        a = X**a
    return a


def LAMBDA(X):
    """Calculates the LAMBDA function of X.

    Args:
        X: A number.

    Returns:
        The LAMBDA function of X.
    """

    # a = log(X, e) * TAU(X)
    a = log(X) * TAU(X)
    return a


def lpr(x, p, b):
    # TODO: No clue if this calculates a real part
    # Should use complex numbers right away?
    """Calculates the real part of the lp function of x, p, and b.

    Args:
        x: A number.
        p: A number.
        b: A number.

    Returns:
        The real part of the lp function of x, p, and b.
    """

    X = LAMBDA(x)
    if X >= 0:
        A = (X**p) * cos(log(X) * b)
    else:
        A = exp(log(-X, e) * p - pi * b) * cos(log(-X) * b + p * pi)
    return A


def lpi(x, p, b):
    # TODO: No clue if this calculates a maginary part
    # Should use complex numbers right away?
    """Calculates the imaginary part of the L function of x, p, and b.

    Args:
        x: A number.
        p: A number.
        b: A number.

    Returns:
        The imaginary part of the L function of x, p, and b.
    """

    X = LAMBDA(x)
    if X >= 0:
        A = (X**p) * sin(log(X, e) * b)
    else:
        A = e ** (log(-X, e) * p - pi * b) * sin(log(-X, e) * b + p * pi)
    return A


def entier(X):
    # TODO:redundant function, which renames floor()
    # Is better to rename the function to "floor" and delete it.
    """Calculates the integer part of X.

    Args:
        X: A number.

    Returns:
        The integer part of X.
    """

    return floor(X)


def decimal(X):
    # TODO: check if is required for readability.
    # Otherwise rename decimal(X) to "x % 1"
    """Calculates the decimal part of X."""
    # a = entier(X)
    # b = X - a
    # return b
    return X % 1


def Nu(X):
    """Calculates the number of iterations needed to calculate the b**iterations = X.

    Args:
        X: A number.

    Returns:
        An integer.
        The number of iterations.
    """

    n = 0
    a = fn(X, n)
    b = TAU(X)
    error_squared = (
        0.0001**2
    )  # To avoid redundant calculations and improve readability
    while ((a - b) ** 2) > error_squared:
        n = n + 1
        a = fn(X, n)
    return n


def tetraa(X, a, b):
    """Calculates the iterated logarithm of [TODO:SOMETHING] in base X, Nu(X) times.

    Args:
        X: A number.
        a: A number.
        b: A number.

    Returns:
        A tuple of real numbers
    """

    E = entier(a)
    D = decimal(a)
    N = Nu(X)
    A = fn(X, N + E) - TAU(X)
    B = (A * (lpr(X, D, b))) + TAU(X)
    C = A * (lpi(X, D, b))
    O = logan(B, C, X, N)
    return O


def BIGn(X):
    """Calculates the BIGn function of X.
    Which is a number of iterations

    TODO:
    WARNING: SIDE EFFECT:
    THE VALUE OF X IS MODIFIED
    Args:
        X: A number.

    Returns:
        an integer
    """

    n = X
    a = 1
    if 3.9 < X < 5:
        X = X**X
        a = 2
    else:
        # TODO: if X is complex, X < 3000 will fail
        while X < 3000:
            X = n**X
            a = a + 1
    return a


def BIGx(X):
    """Calculates the BIGx function of X. TODO: ?

    Args:
        X: A number.

    Returns:
        The BIGx function of X.
    """

    n = X
    if 3.9 < X < 5:
        X = X**X
    else:
        while X < 3000:
            X = n**X
    return X


def logwan(X, a, n):
    """Calculates the n-iterated-logarithm of X in base a.

    Args:
        X: A number.
        a: A number.
        n: A number.

    Returns:
        A number.
    """

    # while n > 0:
    #     X = log(X + 1, a)
    #     n = n - 1
    # return X
    for i in range(n):
        X = log(X + 1, a)
    return X


def PUr(X, a, b, n):
    """Calculates the [real part?] of the PU [?] function of X, a, b, and n.

    TODO:
    WARNING: SIDE EFFECTS
    a, b and n are modified
    Args:
        X: A number.
        a: A number.
        b: A number.
        n: A number.

    Returns:
        A number
    """

    while n > 0:
        A = (X**a) * cos(log(X, e) * b)
        B = (X**a) * sin(log(X, e) * b)
        a = A
        b = B
        n = n - 1
    return a


def PUi(X, a, b, n):
    """Calculates the [imaginary part?] of the PU function of X, a, b, and n.

    Args:
        X: A number.
        a: A number.
        b: A number.
        n: A number.

    Returns:
        A number
    """

    while n > 0:
        A = (X**a) * cos(log(X, e) * b)
        B = (X**a) * sin(log(X, e) * b)
        a = A
        b = B
        n = n - 1
    return b


def Gn(a, b, X, n):
    """Calculates the [real and imaginary parts?] of the G function of a, b, X, and n.

    Args:
        a: A number.
        b: A number.
        X: A number.
        n: A number.

    Returns:
        a tuple of numbers
    """

    while n > 0:
        A = (X**a) * cos(log(X, e) * b) - 1
        B = (X**a) * sin(log(X, e) * b)
        a = A
        b = B
        n = n - 1
    return a, b


def lim(X):
    """Calculates the limit of the tetrahedral function of X.

    Args:
        X: A number.

    Returns:
        The limit of the tetrahedral function of X.
    """

    A = BIGx(X)
    # if X < e:
    #     b = logwan(A, X, 400)
    # else:
    #     b = 0
    # return b
    return logwan(A, X, 400) if X < e else 0


def gamma(X):
    #TODO: if this is the standard gammma function, it is available in scipy.special.gammma()
    #Otherwise is an unfortunate name choice
    """Calculates the [gamma function?] of X.

    Args:
        X: A number.

    Returns:
        The gama function of X.
    """

    #A = (lim(X) + 1) * log(X, e)
    A = (lim(X) + 1) * log(X) #Log() is base e when the base is non specified
    return A


def NA(X):
    """Calculates a number of iterations .

    Args:
        X: A number.

    Returns:
        an integer
    """

    A = BIGx(X)
    B = lim(X)
    n = 0
    error_squared = (10 ** -6)**2
    while ((A - B) ** 2) > error_squared:
        n = n + 1
        A = logwan(A, X, 1)
    return n


def fin(X, p, b):
    """Calculates the [fin?] function of X, p, and b, where X is greater than e**(1/e).

    Args:
        X: A number.
        p: A number.
        b: A number.

    Returns:
        A tuple of numbers
    """

    E = decimal(1 - decimal(p))
    Z = entier(p)
    A = BIGx(X)
    B = logwan(A, X, NA(X))
    C = B - lim(X)
    D = (C / (gamma(X) ** E) * cos(log(gamma(X), e) * b)) + lim(X)
    W = C / (gamma(X) ** E) * sin(log(gamma(X), e) * b)
    F, U = Gn(D, W, X, NA(X))
    Y = BIGn(X) - E - p
    if Y >= 0:
        O = logan(F, U, X, Y)
    else:
        O = PUr(F, U, X, -Y), PUi(F, U, X, -Y)
    return O


def tetra(X, n, b):
    """Calculates [the tetration?] of X to n, and b.

    Args:
        X: A number.
        n: A number.
        b: A number.

    Returns:
        #TODO returns different types? Better would be to use math.complex() and always return complex
        A number when n >= -1 and decimal(n) <= 0 and b == 0:
        A tuple of numbers otherwise
    """

    if n < -2 and p(n) <= 0:
        # Z = "ERROR"
        raise ValueError("n must be greater than -2 and p(n) must be greater than 0.")
    #TODO: decimal() cannot return a value decimal(n) <= 0, so the check is redundant or there is some problem.
    elif n >= -1 and decimal(n) <= 0 and b == 0:
        Z = fn(X, n)
    else:
        if e ** (-e) <= X <= e ** (1 / e):
            Z = tetraa(X, n, b)
        elif X > e ** (1 / e):
            Z = fin(X, n, b)
        else:
            # Z = "ERROR"
            raise ValueError("X must satisfy e^-e <= X )
    return Z
Reply
#8
(10/19/2023, 01:34 AM)marracco Wrote: I asked ChatGTP to add the docstrings (which I edited, but I have no clue what this code does)

Fixed the tabulation error.

I suggest to use math.complex instead of the real and imaginary parts

I added some "TODO:" labels 

Code:
# This code uses Shanghai46 method for calculation of tetration as described in
# TODO: fix link
# https://tetrationforum.org/search.php?action=results&sid=afae76cdf0119ae9ab1587cdd6166152&sortby=dateline&order=desc&uid=0
#
#Call tree
# tetra
# ├── fn <-- n is integer
# ├── tetraa <-- e^-e < X < e^(1/e)
# │   ├── entier
# │   ├── decimal
# │   ├── Nu
# │   ├── fn
# │   ├── TAU
# │   ├── LPr
# │   ├── LPi
# │   └── logan
# └── fin <-- e^(1/e) < X
#     ├── decimal
#     ├── entier
#     ├── logwan
#     ├── lim
#     ├── NA
#     ├── BIGx
#     ├── gamma
#     ├── Gn
#     ├── BIGn
#     ├── logan
#     ├── PUr
#     └── PUi
from math import *
import numpy as np


def mod(a, b):
    # TODO this function is unnecessary, because is equivalent to abs(math.complex(a,b))
    """Calculates the modulus of a and b.

    Args:
        a: A number.
        b: A number.

    Returns:
        The modulus of a and b.
    """

    # A = (a**2 + b**2) ** 0.5
    # return A
    return abs(complex(a, b))


def Arg(a, b):
    # TODO this function is unnecessary, because is equivalent to np.angle(math.complex(a,b))
    """Calculates the argument of a and b.

    Args:
        a: A number.
        b: A number.

    Returns:
        The argument of a and b.
    """

    # Z = atan2(b, a)
    # return Z
    return np.angle(complex(a, b))


def p(x):
    """returns x when x is positive,
       or the fractional part of x, when x is negative

    Args:
        x: A number.

    Returns:
        If x is positive, the function returns x.
        If x is negative, the function returns the fractional part of x.
    """

    # a = x
    # while a < 0:
    #     a = a + 1
    # return a
    return x if x >= 0 else x % 1


def fn(a, n):
    """Calculates the tetration of a to the power of n.

    Args:
        a: A number.
        n: A number.

    Returns:
        The repeated power of a, n times
    """

    # X = 0
    # while n + 1 > 0:
    #     n = n - 1
    #     X = a**X
    # return X

    result = 1
    for i in range(n):
        result = a**result
    return result


def logan(X, Y, a, n):
    """Calculates the n-iterated logarithm of X in base a.

    Args:
        X: A number.
        Y: A number.
        a: A number.
        n: A number.

    Returns:
        a tuple of real numbers:
        The real, and the imaginary part of:
            The n-iterated logarithm of X in base a.
    """

    result = complex(X, Y)
    for i in range(n):
        result = log(result, a)

    return result.real, result.imag


def TAU(X):
    """Calculates the TAU function of X.

    Args:
        X: A number.

    Returns:
        The TAU function of X.
    """
    # TODO: Is this a limit for long tetrations?
    # It will rapidly overflow
    # maybe is better to check the radius of convergence and calcualte the limit using the known functions.

    # n = 0
    # a = 1
    # while n < 400:
    #     a = X**a
    #     n += 1
    # return a
    a = 1
    for i in range(400):
        a = X**a
    return a


def LAMBDA(X):
    """Calculates the LAMBDA function of X.

    Args:
        X: A number.

    Returns:
        The LAMBDA function of X.
    """

    # a = log(X, e) * TAU(X)
    a = log(X) * TAU(X)
    return a


def lpr(x, p, b):
    # TODO: No clue if this calculates a real part
    # Should use complex numbers right away?
    """Calculates the real part of the lp function of x, p, and b.

    Args:
        x: A number.
        p: A number.
        b: A number.

    Returns:
        The real part of the lp function of x, p, and b.
    """

    X = LAMBDA(x)
    if X >= 0:
        A = (X**p) * cos(log(X) * b)
    else:
        A = exp(log(-X, e) * p - pi * b) * cos(log(-X) * b + p * pi)
    return A


def lpi(x, p, b):
    # TODO: No clue if this calculates a maginary part
    # Should use complex numbers right away?
    """Calculates the imaginary part of the L function of x, p, and b.

    Args:
        x: A number.
        p: A number.
        b: A number.

    Returns:
        The imaginary part of the L function of x, p, and b.
    """

    X = LAMBDA(x)
    if X >= 0:
        A = (X**p) * sin(log(X, e) * b)
    else:
        A = e ** (log(-X, e) * p - pi * b) * sin(log(-X, e) * b + p * pi)
    return A


def entier(X):
    # TODO:redundant function, which renames floor()
    # Is better to rename the function to "floor" and delete it.
    """Calculates the integer part of X.

    Args:
        X: A number.

    Returns:
        The integer part of X.
    """

    return floor(X)


def decimal(X):
    # TODO: check if is required for readability.
    # Otherwise rename decimal(X) to "x % 1"
    """Calculates the decimal part of X."""
    # a = entier(X)
    # b = X - a
    # return b
    return X % 1


def Nu(X):
    """Calculates the number of iterations needed to calculate the b**iterations = X.

    Args:
        X: A number.

    Returns:
        An integer.
        The number of iterations.
    """

    n = 0
    a = fn(X, n)
    b = TAU(X)
    error_squared = (
        0.0001**2
    )  # To avoid redundant calculations and improve readability
    while ((a - b) ** 2) > error_squared:
        n = n + 1
        a = fn(X, n)
    return n


def tetraa(X, a, b):
    """Calculates the iterated logarithm of [TODO:SOMETHING] in base X, Nu(X) times.

    Args:
        X: A number.
        a: A number.
        b: A number.

    Returns:
        A tuple of real numbers
    """

    E = entier(a)
    D = decimal(a)
    N = Nu(X)
    A = fn(X, N + E) - TAU(X)
    B = (A * (lpr(X, D, b))) + TAU(X)
    C = A * (lpi(X, D, b))
    O = logan(B, C, X, N)
    return O


def BIGn(X):
    """Calculates the BIGn function of X.
    Which is a number of iterations

    TODO:
    WARNING: SIDE EFFECT:
    THE VALUE OF X IS MODIFIED
    Args:
        X: A number.

    Returns:
        an integer
    """

    n = X
    a = 1
    if 3.9 < X < 5:
        X = X**X
        a = 2
    else:
        # TODO: if X is complex, X < 3000 will fail
        while X < 3000:
            X = n**X
            a = a + 1
    return a


def BIGx(X):
    """Calculates the BIGx function of X. TODO: ?

    Args:
        X: A number.

    Returns:
        The BIGx function of X.
    """

    n = X
    if 3.9 < X < 5:
        X = X**X
    else:
        while X < 3000:
            X = n**X
    return X


def logwan(X, a, n):
    """Calculates the n-iterated-logarithm of X in base a.

    Args:
        X: A number.
        a: A number.
        n: A number.

    Returns:
        A number.
    """

    # while n > 0:
    #     X = log(X + 1, a)
    #     n = n - 1
    # return X
    for i in range(n):
        X = log(X + 1, a)
    return X


def PUr(X, a, b, n):
    """Calculates the [real part?] of the PU [?] function of X, a, b, and n.

    TODO:
    WARNING: SIDE EFFECTS
    a, b and n are modified
    Args:
        X: A number.
        a: A number.
        b: A number.
        n: A number.

    Returns:
        A number
    """

    while n > 0:
        A = (X**a) * cos(log(X, e) * b)
        B = (X**a) * sin(log(X, e) * b)
        a = A
        b = B
        n = n - 1
    return a


def PUi(X, a, b, n):
    """Calculates the [imaginary part?] of the PU function of X, a, b, and n.

    Args:
        X: A number.
        a: A number.
        b: A number.
        n: A number.

    Returns:
        A number
    """

    while n > 0:
        A = (X**a) * cos(log(X, e) * b)
        B = (X**a) * sin(log(X, e) * b)
        a = A
        b = B
        n = n - 1
    return b


def Gn(a, b, X, n):
    """Calculates the [real and imaginary parts?] of the G function of a, b, X, and n.

    Args:
        a: A number.
        b: A number.
        X: A number.
        n: A number.

    Returns:
        a tuple of numbers
    """

    while n > 0:
        A = (X**a) * cos(log(X, e) * b) - 1
        B = (X**a) * sin(log(X, e) * b)
        a = A
        b = B
        n = n - 1
    return a, b


def lim(X):
    """Calculates the limit of the tetrahedral function of X.

    Args:
        X: A number.

    Returns:
        The limit of the tetrahedral function of X.
    """

    A = BIGx(X)
    # if X < e:
    #     b = logwan(A, X, 400)
    # else:
    #     b = 0
    # return b
    return logwan(A, X, 400) if X < e else 0


def gamma(X):
    #TODO: if this is the standard gammma function, it is available in scipy.special.gammma()
    #Otherwise is an unfortunate name choice
    """Calculates the [gamma function?] of X.

    Args:
        X: A number.

    Returns:
        The gama function of X.
    """

    #A = (lim(X) + 1) * log(X, e)
    A = (lim(X) + 1) * log(X) #Log() is base e when the base is non specified
    return A


def NA(X):
    """Calculates a number of iterations .

    Args:
        X: A number.

    Returns:
        an integer
    """

    A = BIGx(X)
    B = lim(X)
    n = 0
    error_squared = (10 ** -6)**2
    while ((A - B) ** 2) > error_squared:
        n = n + 1
        A = logwan(A, X, 1)
    return n


def fin(X, p, b):
    """Calculates the [fin?] function of X, p, and b, where X is greater than e**(1/e).

    Args:
        X: A number.
        p: A number.
        b: A number.

    Returns:
        A tuple of numbers
    """

    E = decimal(1 - decimal(p))
    Z = entier(p)
    A = BIGx(X)
    B = logwan(A, X, NA(X))
    C = B - lim(X)
    D = (C / (gamma(X) ** E) * cos(log(gamma(X), e) * b)) + lim(X)
    W = C / (gamma(X) ** E) * sin(log(gamma(X), e) * b)
    F, U = Gn(D, W, X, NA(X))
    Y = BIGn(X) - E - p
    if Y >= 0:
        O = logan(F, U, X, Y)
    else:
        O = PUr(F, U, X, -Y), PUi(F, U, X, -Y)
    return O


def tetra(X, n, b):
    """Calculates [the tetration?] of X to n, and b.

    Args:
        X: A number.
        n: A number.
        b: A number.

    Returns:
        #TODO returns different types? Better would be to use math.complex() and always return complex
        A number when n >= -1 and decimal(n) <= 0 and b == 0:
        A tuple of numbers otherwise
    """

    if n < -2 and p(n) <= 0:
        # Z = "ERROR"
        raise ValueError("n must be greater than -2 and p(n) must be greater than 0.")
    #TODO: decimal() cannot return a value decimal(n) <= 0, so the check is redundant or there is some problem.
    elif n >= -1 and decimal(n) <= 0 and b == 0:
        Z = fn(X, n)
    else:
        if e ** (-e) <= X <= e ** (1 / e):
            Z = tetraa(X, n, b)
        elif X > e ** (1 / e):
            Z = fin(X, n, b)
        else:
            # Z = "ERROR"
            raise ValueError("X must satisfy e^-e <= X )
    return Z
This weekend, I will go deep into my code, to then tell you what everything does, and how is it related to my method of tetration. I'll try to do your recommendations. But today and tomorrow, I won't be able to.

I think that I will first of all explain my tetration method, then the code
Regards

Shanghai46
Reply
#9
(10/19/2023, 01:34 AM)marracco Wrote: I asked ChatGTP to add the docstrings (which I edited, but I have no clue what this code does)

Fixed the tabulation error.

I suggest to use math.complex instead of the real and imaginary parts

I added some "TODO:" labels 

Code:
# This code uses Shanghai46 method for calculation of tetration as described in
# TODO: fix link
# https://tetrationforum.org/search.php?action=results&sid=afae76cdf0119ae9ab1587cdd6166152&sortby=dateline&order=desc&uid=0
#
#Call tree
# tetra
# ├── fn <-- n is integer
# ├── tetraa <-- e^-e < X < e^(1/e)
# │   ├── entier
# │   ├── decimal
# │   ├── Nu
# │   ├── fn
# │   ├── TAU
# │   ├── LPr
# │   ├── LPi
# │   └── logan
# └── fin <-- e^(1/e) < X
#     ├── decimal
#     ├── entier
#     ├── logwan
#     ├── lim
#     ├── NA
#     ├── BIGx
#     ├── gamma
#     ├── Gn
#     ├── BIGn
#     ├── logan
#     ├── PUr
#     └── PUi
from math import *
import numpy as np


def mod(a, b):
    # TODO this function is unnecessary, because is equivalent to abs(math.complex(a,b))
    """Calculates the modulus of a and b.

    Args:
        a: A number.
        b: A number.

    Returns:
        The modulus of a and b.
    """

    # A = (a**2 + b**2) ** 0.5
    # return A
    return abs(complex(a, b))


def Arg(a, b):
    # TODO this function is unnecessary, because is equivalent to np.angle(math.complex(a,b))
    """Calculates the argument of a and b.

    Args:
        a: A number.
        b: A number.

    Returns:
        The argument of a and b.
    """

    # Z = atan2(b, a)
    # return Z
    return np.angle(complex(a, b))


def p(x):
    """returns x when x is positive,
       or the fractional part of x, when x is negative

    Args:
        x: A number.

    Returns:
        If x is positive, the function returns x.
        If x is negative, the function returns the fractional part of x.
    """

    # a = x
    # while a < 0:
    #     a = a + 1
    # return a
    return x if x >= 0 else x % 1


def fn(a, n):
    """Calculates the tetration of a to the power of n.

    Args:
        a: A number.
        n: A number.

    Returns:
        The repeated power of a, n times
    """

    # X = 0
    # while n + 1 > 0:
    #     n = n - 1
    #     X = a**X
    # return X

    result = 1
    for i in range(n):
        result = a**result
    return result


def logan(X, Y, a, n):
    """Calculates the n-iterated logarithm of X in base a.

    Args:
        X: A number.
        Y: A number.
        a: A number.
        n: A number.

    Returns:
        a tuple of real numbers:
        The real, and the imaginary part of:
            The n-iterated logarithm of X in base a.
    """

    result = complex(X, Y)
    for i in range(n):
        result = log(result, a)

    return result.real, result.imag


def TAU(X):
    """Calculates the TAU function of X.

    Args:
        X: A number.

    Returns:
        The TAU function of X.
    """
    # TODO: Is this a limit for long tetrations?
    # It will rapidly overflow
    # maybe is better to check the radius of convergence and calcualte the limit using the known functions.

    # n = 0
    # a = 1
    # while n < 400:
    #     a = X**a
    #     n += 1
    # return a
    a = 1
    for i in range(400):
        a = X**a
    return a


def LAMBDA(X):
    """Calculates the LAMBDA function of X.

    Args:
        X: A number.

    Returns:
        The LAMBDA function of X.
    """

    # a = log(X, e) * TAU(X)
    a = log(X) * TAU(X)
    return a


def lpr(x, p, b):
    # TODO: No clue if this calculates a real part
    # Should use complex numbers right away?
    """Calculates the real part of the lp function of x, p, and b.

    Args:
        x: A number.
        p: A number.
        b: A number.

    Returns:
        The real part of the lp function of x, p, and b.
    """

    X = LAMBDA(x)
    if X >= 0:
        A = (X**p) * cos(log(X) * b)
    else:
        A = exp(log(-X, e) * p - pi * b) * cos(log(-X) * b + p * pi)
    return A


def lpi(x, p, b):
    # TODO: No clue if this calculates a maginary part
    # Should use complex numbers right away?
    """Calculates the imaginary part of the L function of x, p, and b.

    Args:
        x: A number.
        p: A number.
        b: A number.

    Returns:
        The imaginary part of the L function of x, p, and b.
    """

    X = LAMBDA(x)
    if X >= 0:
        A = (X**p) * sin(log(X, e) * b)
    else:
        A = e ** (log(-X, e) * p - pi * b) * sin(log(-X, e) * b + p * pi)
    return A


def entier(X):
    # TODO:redundant function, which renames floor()
    # Is better to rename the function to "floor" and delete it.
    """Calculates the integer part of X.

    Args:
        X: A number.

    Returns:
        The integer part of X.
    """

    return floor(X)


def decimal(X):
    # TODO: check if is required for readability.
    # Otherwise rename decimal(X) to "x % 1"
    """Calculates the decimal part of X."""
    # a = entier(X)
    # b = X - a
    # return b
    return X % 1


def Nu(X):
    """Calculates the number of iterations needed to calculate the b**iterations = X.

    Args:
        X: A number.

    Returns:
        An integer.
        The number of iterations.
    """

    n = 0
    a = fn(X, n)
    b = TAU(X)
    error_squared = (
        0.0001**2
    )  # To avoid redundant calculations and improve readability
    while ((a - b) ** 2) > error_squared:
        n = n + 1
        a = fn(X, n)
    return n


def tetraa(X, a, b):
    """Calculates the iterated logarithm of [TODO:SOMETHING] in base X, Nu(X) times.

    Args:
        X: A number.
        a: A number.
        b: A number.

    Returns:
        A tuple of real numbers
    """

    E = entier(a)
    D = decimal(a)
    N = Nu(X)
    A = fn(X, N + E) - TAU(X)
    B = (A * (lpr(X, D, b))) + TAU(X)
    C = A * (lpi(X, D, b))
    O = logan(B, C, X, N)
    return O


def BIGn(X):
    """Calculates the BIGn function of X.
    Which is a number of iterations

    TODO:
    WARNING: SIDE EFFECT:
    THE VALUE OF X IS MODIFIED
    Args:
        X: A number.

    Returns:
        an integer
    """

    n = X
    a = 1
    if 3.9 < X < 5:
        X = X**X
        a = 2
    else:
        # TODO: if X is complex, X < 3000 will fail
        while X < 3000:
            X = n**X
            a = a + 1
    return a


def BIGx(X):
    """Calculates the BIGx function of X. TODO: ?

    Args:
        X: A number.

    Returns:
        The BIGx function of X.
    """

    n = X
    if 3.9 < X < 5:
        X = X**X
    else:
        while X < 3000:
            X = n**X
    return X


def logwan(X, a, n):
    """Calculates the n-iterated-logarithm of X in base a.

    Args:
        X: A number.
        a: A number.
        n: A number.

    Returns:
        A number.
    """

    # while n > 0:
    #     X = log(X + 1, a)
    #     n = n - 1
    # return X
    for i in range(n):
        X = log(X + 1, a)
    return X


def PUr(X, a, b, n):
    """Calculates the [real part?] of the PU [?] function of X, a, b, and n.

    TODO:
    WARNING: SIDE EFFECTS
    a, b and n are modified
    Args:
        X: A number.
        a: A number.
        b: A number.
        n: A number.

    Returns:
        A number
    """

    while n > 0:
        A = (X**a) * cos(log(X, e) * b)
        B = (X**a) * sin(log(X, e) * b)
        a = A
        b = B
        n = n - 1
    return a


def PUi(X, a, b, n):
    """Calculates the [imaginary part?] of the PU function of X, a, b, and n.

    Args:
        X: A number.
        a: A number.
        b: A number.
        n: A number.

    Returns:
        A number
    """

    while n > 0:
        A = (X**a) * cos(log(X, e) * b)
        B = (X**a) * sin(log(X, e) * b)
        a = A
        b = B
        n = n - 1
    return b


def Gn(a, b, X, n):
    """Calculates the [real and imaginary parts?] of the G function of a, b, X, and n.

    Args:
        a: A number.
        b: A number.
        X: A number.
        n: A number.

    Returns:
        a tuple of numbers
    """

    while n > 0:
        A = (X**a) * cos(log(X, e) * b) - 1
        B = (X**a) * sin(log(X, e) * b)
        a = A
        b = B
        n = n - 1
    return a, b


def lim(X):
    """Calculates the limit of the tetrahedral function of X.

    Args:
        X: A number.

    Returns:
        The limit of the tetrahedral function of X.
    """

    A = BIGx(X)
    # if X < e:
    #     b = logwan(A, X, 400)
    # else:
    #     b = 0
    # return b
    return logwan(A, X, 400) if X < e else 0


def gamma(X):
    #TODO: if this is the standard gammma function, it is available in scipy.special.gammma()
    #Otherwise is an unfortunate name choice
    """Calculates the [gamma function?] of X.

    Args:
        X: A number.

    Returns:
        The gama function of X.
    """

    #A = (lim(X) + 1) * log(X, e)
    A = (lim(X) + 1) * log(X) #Log() is base e when the base is non specified
    return A


def NA(X):
    """Calculates a number of iterations .

    Args:
        X: A number.

    Returns:
        an integer
    """

    A = BIGx(X)
    B = lim(X)
    n = 0
    error_squared = (10 ** -6)**2
    while ((A - B) ** 2) > error_squared:
        n = n + 1
        A = logwan(A, X, 1)
    return n


def fin(X, p, b):
    """Calculates the [fin?] function of X, p, and b, where X is greater than e**(1/e).

    Args:
        X: A number.
        p: A number.
        b: A number.

    Returns:
        A tuple of numbers
    """

    E = decimal(1 - decimal(p))
    Z = entier(p)
    A = BIGx(X)
    B = logwan(A, X, NA(X))
    C = B - lim(X)
    D = (C / (gamma(X) ** E) * cos(log(gamma(X), e) * b)) + lim(X)
    W = C / (gamma(X) ** E) * sin(log(gamma(X), e) * b)
    F, U = Gn(D, W, X, NA(X))
    Y = BIGn(X) - E - p
    if Y >= 0:
        O = logan(F, U, X, Y)
    else:
        O = PUr(F, U, X, -Y), PUi(F, U, X, -Y)
    return O


def tetra(X, n, b):
    """Calculates [the tetration?] of X to n, and b.

    Args:
        X: A number.
        n: A number.
        b: A number.

    Returns:
        #TODO returns different types? Better would be to use math.complex() and always return complex
        A number when n >= -1 and decimal(n) <= 0 and b == 0:
        A tuple of numbers otherwise
    """

    if n < -2 and p(n) <= 0:
        # Z = "ERROR"
        raise ValueError("n must be greater than -2 and p(n) must be greater than 0.")
    #TODO: decimal() cannot return a value decimal(n) <= 0, so the check is redundant or there is some problem.
    elif n >= -1 and decimal(n) <= 0 and b == 0:
        Z = fn(X, n)
    else:
        if e ** (-e) <= X <= e ** (1 / e):
            Z = tetraa(X, n, b)
        elif X > e ** (1 / e):
            Z = fin(X, n, b)
        else:
            # Z = "ERROR"
            raise ValueError("X must satisfy e^-e <= X )
    return Z

Btw I checked a bit and did a quick change of my code.
I erased p(x) from existance, and remplaced it (in the if of tetra) by "n==int(n) and b==0". I also added a "if x==1, Z=(1,0)"
Regards

Shanghai46
Reply
#10
(10/19/2023, 11:09 AM)Shanghai46 Wrote: This weekend, I will go deep into my code, to then tell you what everything does, and how is it related to my method of tetration. I'll try to do your recommendations. But today and tomorrow, I won't be able to.

I think that I will first of all explain my tetration method, then the code

Please, add a link in the code to your post or document where you explain your method.
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  Terse Schroeder & Abel function code Daniel 1 1,421 10/16/2022, 07:03 AM
Last Post: Daniel
  The beta method program JmsNxn 0 1,963 02/25/2022, 03:05 AM
Last Post: JmsNxn
  C++ code for tet, ate and hexp MorgothV8 0 6,266 07/10/2014, 04:24 PM
Last Post: MorgothV8
  Which method is currently "the best"? MorgothV8 2 10,424 11/15/2013, 03:42 PM
Last Post: MorgothV8
  "Kneser"/Riemann mapping method code for *complex* bases mike3 2 13,477 08/15/2011, 03:14 PM
Last Post: Gottfried
  An incremental method to compute (Abel) matrix inverses bo198214 3 16,805 07/20/2010, 12:13 PM
Last Post: Gottfried
  Single-exp series computation code mike3 0 5,827 04/20/2010, 08:59 PM
Last Post: mike3
  Toying with the Borel summation to calculate tetration mike3 11 35,971 03/25/2010, 09:00 PM
Last Post: mike3
  SAGE code for computing flow matrix for exp(z)-1 jaydfox 4 17,763 08/21/2009, 05:32 PM
Last Post: jaydfox
  Matrix-method: compare use of different fixpoints Gottfried 23 55,870 11/30/2007, 05:24 PM
Last Post: andydude



Users browsing this thread: 1 Guest(s)