Fractional tetration method
#1
\( x = e \uparrow \uparrow \frac{1}{2} = \operatorname{ssrt}(e) \iff x \uparrow \uparrow 2 = x^{x} = e \implies \ln(x^{x}) = x \ln x = e^{\ln x} \ln x = \ln e = 1 \implies W(e^{\ln x}) = \ln x = W(1) = \Omega \implies x = \boxed{e \uparrow \uparrow \frac{1}{2} = e^{\Omega}} \)

Is this method known? This is just an example.

Sleepy

My theorem:


\( \textbf{Notation} \)

\( \text{Superroot of orden \(n\):} \quad x = \sqrt[b]{a}_{\mathrm{s}^{n-1}} \overset{\text{def}}{\iff} x \uparrow^n b = a \)
\( \text{Superlogarithm of order \(n\):} \quad x = \ln(a)_{\mathrm{s}^{n-1}} \overset{\text{def}}{\iff} e \uparrow^n x = a \)


\( \textbf{Theorem} \)

\( Y\big(\ln(y \uparrow^n q)_{\mathrm{s}^{n-2}} \, ; q, n\big) \overset{\text{def}}{=} \ln(y)_{\mathrm{s}^{n-2}} \)

\( \forall a \in \mathbb{C}^*,\ n \in \mathbb{N}_{\ge 2},\ p \in \mathbb{N}_0,\ q \in \mathbb{Z}^*, \)

\( \boxed{a \uparrow^n \frac{p}{q} = \sqrt[q]{a \uparrow^n p}_{\mathrm{s}^{n-1}} = e \uparrow^{n-1} Y\big(\ln(a \uparrow^n p)_{\mathrm{s}^{n-2}} \, ; q, n\big)} \)


\( \textbf{First corollary} \)

\( Y(z \, ; 2, 2) \equiv W(z) \)

I know! The notation is (probably) terrible, but the flavor is in the logic behind it, or so I think. I have been doing some calculations and... yes, it works, although there may be some error in how I wrote it.


PD: I have used \( \operatorname{ssrt}(z) \) as \( \sqrt[2]{z}_{\mathrm{s}} \).

Thanks a lot.


Attached Files
.txt   e^Omega 4300 digits.txt (Size: 4.2 KB / Downloads: 224)
Reply
#2
Your very first assumption seems flawed. I believe it was prooven inconsistent years ago. I don't remember the prof nor the thread.
Anyways you should check if your definition \( ^{\frac{1}{n}}b:={\rm sqrt}_n (b)\) is coherent with the law \( ^{q+1}b =\exp_b(^{q}b) \) for each \(q\) rational number..

I have the feeling that you will find a contraddiction somwhere.

Mother Law \(\sigma^+\circ 0=\sigma \circ \sigma^+ \)

\({\rm Grp}_{\rm pt} ({\rm RK}J,G)\cong \mathbb N{\rm Set}_{\rm pt} (J, \Sigma^G)\)
Reply
#3
(03/10/2025, 08:14 PM)Koha Wrote: \( x = e \uparrow \uparrow \frac{1}{2} = \operatorname{ssrt}(e) \iff x \uparrow \uparrow 2 = x^{x} = e \implies \ln(x^{x}) = x \ln x = e^{\ln x} \ln x = \ln e = 1 \implies W(e^{\ln x}) = \ln x = W(1) = \Omega \implies x = \boxed{e \uparrow \uparrow \frac{1}{2} = e^{\Omega}} \)

Is this method known? This is just an example.

Sleepy

My theorem:


\( \textbf{Notation} \)

\( \text{Superroot of orden \(n\):} \quad x = \sqrt[b]{a}_{\mathrm{s}^{n-1}} \overset{\text{def}}{\iff} x \uparrow^n b = a \)
\( \text{Superlogarithm of order \(n\):} \quad x = \ln(a)_{\mathrm{s}^{n-1}} \overset{\text{def}}{\iff} e \uparrow^n x = a \)


\( \textbf{Theorem} \)

\( Y\big(\ln(y \uparrow^n q)_{\mathrm{s}^{n-2}} \, ; q, n\big) \overset{\text{def}}{=} \ln(y)_{\mathrm{s}^{n-2}} \)

\( \forall a \in \mathbb{C}^*,\ n \in \mathbb{N}_{\ge 2},\ p \in \mathbb{N}_0,\ q \in \mathbb{Z}^*, \)

\( \boxed{a \uparrow^n \frac{p}{q} = \sqrt[q]{a \uparrow^n p}_{\mathrm{s}^{n-1}} = e \uparrow^{n-1} Y\big(\ln(a \uparrow^n p)_{\mathrm{s}^{n-2}} \, ; q, n\big)} \)


\( \textbf{First corollary} \)

\( Y(z \, ; 2, 2) \equiv W(z) \)

I know! The notation is (probably) terrible, but the flavor is in the logic behind it, or so I think. I have been doing some calculations and... yes, it works, although there may be some error in how I wrote it.


PD: I have used \( \operatorname{ssrt}(z) \) as \( \sqrt[2]{z}_{\mathrm{s}} \).

Thanks a lot.
The point is that the tetration root of the value B from the number A finds such a number C that, when raised to the tetration of B, gives the same number A.
The tetration root of the value A is not equal to the tetration with the index 1/A, since these two functions are not communicative, unlike the usual raising to a power and the root.
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  ChatGPT checks in on fractional iteration. Daniel 0 2,531 05/17/2023, 01:48 PM
Last Post: Daniel
  The ultimate beta method JmsNxn 8 8,332 04/15/2023, 02:36 AM
Last Post: JmsNxn
  Bridging fractional iteration and fractional calculus Daniel 8 7,013 04/02/2023, 02:16 AM
Last Post: JmsNxn
  greedy method for tetration ? tommy1729 0 2,392 02/11/2023, 12:13 AM
Last Post: tommy1729
  tommy's "linear" summability method tommy1729 15 13,587 02/10/2023, 03:55 AM
Last Post: JmsNxn
  Fractional Integration Caleb 11 10,665 02/10/2023, 03:49 AM
Last Post: JmsNxn
  another infinite composition gaussian method clone tommy1729 2 4,057 01/24/2023, 12:53 AM
Last Post: tommy1729
  Semi-group iso , tommy's limit fix method and alternative limit for 2sinh method tommy1729 1 3,790 12/30/2022, 11:27 PM
Last Post: tommy1729
  Discussing fractional iterates of \(f(z) = e^z-1\) JmsNxn 2 3,728 11/22/2022, 03:52 AM
Last Post: JmsNxn
  [MSE] short review/implem. of Andy's method and a next step Gottfried 4 5,246 11/03/2022, 11:51 AM
Last Post: Gottfried



Users browsing this thread: 1 Guest(s)