Tommy-Mandelbrot function tommy1729 Ultimate Fellow Posts: 1,906 Threads: 409 Joined: Feb 2009   04/21/2015, 01:02 PM Let a(x) = x^2 +1 Let b(x) be the functional inverse of a(x). Let c(x) = x^2 +1 - exp(-2x). D(x) = b^[n]( c^[1/2] (a^[n](x)) ) Where n Goes to infinity. D(x) is the Tommy-Mandelbrot function. Conjecture : D(z) is analytic for Re(z) > 0 and z no element of the mandelbrot set from a(x). Regards Tommy1729 « Next Oldest | Next Newest »

 Possibly Related Threads… Thread Author Replies Views Last Post " tommy quaternion " tommy1729 41 13,040 05/23/2023, 07:56 PM Last Post: tommy1729 Anyone have any ideas on how to generate this function? JmsNxn 3 177 05/21/2023, 03:30 PM Last Post: Ember Edison [MSE] Mick's function Caleb 1 219 03/08/2023, 02:33 AM Last Post: Caleb [special] binary partition zeta function tommy1729 1 178 02/27/2023, 01:23 PM Last Post: tommy1729 [NT] Caleb stuff , mick's MSE and tommy's diary functions tommy1729 0 133 02/26/2023, 08:37 PM Last Post: tommy1729 [NT] Extending a Jacobi function using Riemann Surfaces JmsNxn 2 219 02/26/2023, 08:22 PM Last Post: tommy1729 tommy's "linear" summability method tommy1729 15 906 02/10/2023, 03:55 AM Last Post: JmsNxn toy zeta function tommy1729 0 180 01/20/2023, 11:02 PM Last Post: tommy1729 geometric function theory ideas tommy1729 0 225 12/31/2022, 12:19 AM Last Post: tommy1729 Iterated function convergence Daniel 1 358 12/18/2022, 01:40 AM Last Post: JmsNxn

Users browsing this thread: 1 Guest(s)