[2014] Uniqueness of periodic superfunction
#1
Let \( F(z) \) be a periodic superfunction of a real-entire \( f(z) \).

If \( f(z) \) has no parabolic fixpoints and \( f(z) \) has exactly \( n \) pairs of \( (z_i,z_j) \) where \( z_i \) is a repelling fixpoint and \( z_j \) is an attracting fixpoint , then there are at most \( n \) solutions \( F(z) \).

This relates to

http://math.eretrandre.org/tetrationforu...hp?tid=932

and

http://www.ams.org/journals/mcom/2010-79.../home.html

and

http://math.eretrandre.org/tetrationforu...php?tid=89


Regards

tommy1729
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  Periodic analysis of dynamicals systems MphLee 1 168 02/21/2023, 05:43 AM
Last Post: JmsNxn
  Some "Theorem" on the generalized superfunction Leo.W 59 24,322 09/18/2022, 11:05 PM
Last Post: tommy1729
  Uniqueness of fractionally iterated functions Daniel 7 1,453 07/05/2022, 01:21 AM
Last Post: JmsNxn
  Universal uniqueness criterion? bo198214 57 117,418 06/28/2022, 12:00 AM
Last Post: JmsNxn
  A question concerning uniqueness JmsNxn 4 10,582 06/10/2022, 08:45 AM
Last Post: Catullus
  On the [tex]2 \pi i[/tex]-periodic solution to tetration, base e JmsNxn 0 1,014 09/28/2021, 05:44 AM
Last Post: JmsNxn
  A compilation of graphs for the periodic real valued tetrations JmsNxn 1 1,226 09/09/2021, 04:37 AM
Last Post: JmsNxn
  Generalized Kneser superfunction trick (the iterated limit definition) MphLee 25 14,939 05/26/2021, 11:55 PM
Last Post: MphLee
  [Exercise] A deal of Uniqueness-critrion:Gamma-functionas iteration Gottfried 6 8,087 03/19/2021, 01:25 PM
Last Post: tommy1729
  Half-iterates and periodic stuff , my mod method [2019] tommy1729 0 2,891 09/09/2019, 10:55 PM
Last Post: tommy1729



Users browsing this thread: 1 Guest(s)