Just an accidental finding.
[update]: Hmm, after some more investigation it seems, that the halfiterative of the sinh alone is not that "nugget" which I felt it were in the beginning. Still it might be a good starting point, but after some regressions with various cofactors it seems to me, that likely it cannot substantially be improved by adding terms of standardfunctions and/or further fractional iterates. So I think, Jay's very well worked function is still the way to go and this posting should only survive for historical reasons... [/update]
I use the sequence A[k]=(1,1,2,2,4,4,6,6,...) with k beginning at 0 and tried the half-iterate of the asinh()-function to translate A[k]-> k^ .
I get that nice approximation:
In reverse it looks like
Perhaps it is easy to finetune this much more with not too much effort.
[update]: a first finetuning: a^ (k) = sinh°05( (1.018 k -0.174)/2)
See the pictures with the already improved data.
Absolute values:
Ratios: [update]: upps, after looking behind index k>150 things are no more looking so nice... :-(
Technical details:
I computed the powerseries for the half-iterate from the sqrt of the carlemanmatrix for sinh to 128 terms.
The convergence-radius is zero, but for x near zero one can evaluate the first 128 terms of the powerseries and get a value, which reinserted gives indeed the one-time-iterate to, say 20 or 30 dec digits precision.
So high arguments x of the sinh°05(x) must be transferred by asinh()-iterations sufficiently near towards zero (say 0<x<0.5 or x<0.2 for k~80) , then the powerseries can be evaluated with that x, and then the result must be retransferred by appropriate sinh()-iterations.
I computed this with 400 digits internal precision and float algebra (although the square-root of the Carlemanmatrix can be determined in rational algebra).
Gottfried
(If someone needs it I can supply the Pari/GP-code)
[update]: Hmm, after some more investigation it seems, that the halfiterative of the sinh alone is not that "nugget" which I felt it were in the beginning. Still it might be a good starting point, but after some regressions with various cofactors it seems to me, that likely it cannot substantially be improved by adding terms of standardfunctions and/or further fractional iterates. So I think, Jay's very well worked function is still the way to go and this posting should only survive for historical reasons... [/update]
I use the sequence A[k]=(1,1,2,2,4,4,6,6,...) with k beginning at 0 and tried the half-iterate of the asinh()-function to translate A[k]-> k^ .
I get that nice approximation:
Code:
.
k | k^ = -1 | |
| +2*asinh°0.5(A[k]) | A[k] | d = k^ - k
-----+---------------------+------+-------------------
0 0.871122566717836 1 0.8711225667178365
1 0.871122566717836 1 -0.1288774332821635
2 2.333123406391677 2 0.3331234063916770
3 2.333123406391677 2 -0.6668765936083230
4 4.444125935755581 4 0.4441259357555807
5 4.444125935755581 4 -0.5558740642444193
6 5.996686817157767 6 -0.003313182842233339
7 5.996686817157767 6 -1.003313182842233
8 8.309891291850146 10 0.3098912918501464
9 8.309891291850146 10 -0.6901087081498536
10 10.06605408134559 14 0.06605408134559265
11 10.06605408134559 14 -0.9339459186544073
12 12.14359799584454 20 0.1435979958445373
13 12.14359799584454 20 -0.8564020041554627
14 13.82177298614942 26 -0.1782270138505756
15 13.82177298614942 26 -1.178227013850576
16 16.08985351232628 36 0.08985351232627991
17 16.08985351232628 36 -0.9101464876737201
18 17.94134162168168 46 -0.05865837831832136
19 17.94134162168168 46 -1.058658378318321
20 20.09383140688473 60 0.09383140688473422
21 20.09383140688473 60 -0.9061685931152658
22 21.90407738775139 74 -0.09592261224861381
23 21.90407738775139 74 -1.095922612248614
24 24.09366985432521 94 0.09366985432520982
25 24.09366985432521 94 -0.9063301456747902
26 25.95938189509372 114 -0.04061810490628340
27 25.95938189509372 114 -1.040618104906283
28 28.04805382734139 140 0.04805382734139237
29 28.04805382734139 140 -0.9519461726586076
30 29.86181858151267 166 -0.1381814184873316
31 29.86181858151267 166 -1.138181418487332
32 32.04658019188079 202 0.04658019188078527
33 32.04658019188079 202 -0.9534198081192147
34 33.95209498128483 238 -0.04790501871516933
35 33.95209498128483 238 -1.047905018715169
36 36.08894669829039 284 0.08894669829039405
37 36.08894669829039 284 -0.9110533017096059
38 37.97426693042275 330 -0.02573306957725277
39 37.97426693042275 330 -1.025733069577253
40 40.14969749681103 390 0.1496974968110288
41 40.14969749681103 390 -0.8503025031889712
42 42.07952641659918 450 0.07952641659918464
43 42.07952641659918 450 -0.9204735834008154
44 44.20137456045023 524 0.2013745604502300
45 44.20137456045023 524 -0.7986254395497700
46 46.10105039582103 598 0.1010503958210259
47 46.10105039582103 598 -0.8989496041789741
48 48.26520579699401 692 0.2652057969940090
49 48.26520579699401 692 -0.7347942030059910
50 50.20979388257698 786 0.2097938825769775
51 50.20979388257698 786 -0.7902061174230225
52 52.33643071077409 900 0.3364307107740934
53 52.33643071077409 900 -0.6635692892259066
54 54.26025209047609 1014 0.2602520904760932
55 54.26025209047609 1014 -0.7397479095239068
56 56.40159041927338 1154 0.4015904192733788
57 56.40159041927338 1154 -0.5984095807266212
58 58.34609979287966 1294 0.3460997928796596
59 58.34609979287966 1294 -0.6539002071203404
60 60.44611088173228 1460 0.4461108817322844
61 60.44611088173228 1460 -0.5538891182677156
62 62.36400319817613 1626 0.3640031981761257
63 62.36400319817613 1626 -0.6359968018238743
64 64.49766201469299 1828 0.4976620146929893
65 64.49766201469299 1828 -0.5023379853070107
66 66.45061225735103 2030 0.4506122573510340
67 66.45061225735103 2030 -0.5493877426489660
68 68.56130277140938 2268 0.5613027714093829
69 68.56130277140938 2268 -0.4386972285906171
In reverse it looks like
Code:
.
| a^ = | |
k | sinh°05(k/2+1/2) | A[k] | r = a^ /A[k] - 1
-----+---------------------+------+-------------------
0 0.5102310310942976 1 -0.4897689689057024
1 1.078138996064359 1 0.0781389960643593
2 1.748304390930525 2 -0.1258478045347374
3 2.552519461332870 2 0.2762597306664349
4 3.515579526352944 4 -0.1211051184117640
5 4.659355506757197 4 0.1648388766892992
6 6.004813731822326 6 0.0008022886370542993
7 7.572966044912433 6 0.2621610074854055
8 9.385336346538606 10 -0.06146636534613942
9 11.46420789661713 10 0.1464207896617127
10 13.83276703665167 14 -0.01194521166773818
11 16.51519557483509 14 0.1796568267739347
12 19.53673656870888 20 -0.02316317156455596
13 22.92374579523910 20 0.1461872897619548
14 26.70373529679550 26 0.02706674218444246
15 30.90541246272600 26 0.1886697101048460
16 35.55871659041376 36 -0.01225787248850666
17 40.69485405483909 36 0.1304126126344191
18 46.34633276239224 46 0.007528973095483409
19 52.54699630468353 46 0.1423260066235550
20 59.33205807477817 60 -0.01113236542036384
21 66.73813551558644 60 0.1123022585931074
22 74.80328461281173 74 0.01085519747042881
23 83.56703470866675 74 0.1292842528198210
24 93.07042368928640 94 -0.009889109688442508
25 103.3560335835290 94 0.09953227216520219
26 114.4680266007278 114 0.004105496497612463
27 126.4521816281218 114 0.1092296634045772
28 139.3559312040241 140 -0.004600491399828113
29 153.2283989795549 140 0.09448856413967771
30 168.1204376795053 166 0.01277372096087535
31 184.0846675712996 166 0.1089437805499975
32 201.1755154498853 202 -0.004081606683735970
33 219.4492541455617 202 0.08638244626515684
34 238.9640425611633 238 0.004050598996484624
35 259.7799662445876 238 0.09151246321255298
36 281.9590785023372 284 -0.007186343301629582
37 305.5654420595219 284 0.07593465513916145
38 330.6651712715941 330 0.002015670519982010
39 357.3264748929723 330 0.08280749967567349
40 385.6196994076169 390 -0.01123153998046941
41 415.6173729265633 390 0.06568557160657261
42 447.3942496573710 450 -0.005790556316953349
43 481.0273549504231 450 0.06894967766760693
44 516.5960309269911 524 -0.01412971197139100
45 554.1819826939725 524 0.05759920361445136
46 593.8693251502086 598 -0.006907483026407088
47 635.7446303892922 598 0.06311811101888332
48 679.8969757037854 692 -0.01748991950320035
49 726.4179921957754 692 0.04973698294187201
50 775.4019139987164 786 -0.01348356997618778
51 826.9456281155144 786 0.05209367444721939
52 881.1487248778374 900 -0.02094586124684738
53 938.1135490316460 900 0.04234838781293998
54 997.9452514539660 1014 -0.01583308535111831
55 1060.751841505941 1014 0.04610635256996131
56 1126.644240027227 1154 -0.02370516462112075
57 1195.736332976817 1154 0.03616666635772742
58 1268.145025725405 1294 -0.01998066018129422
59 1343.990298004411 1294 0.03863237867419740
60 1423.395259516844 1460 -0.02507174005695639
61 1506.486206215162 1460 0.03183986727065867
62 1593.392677251357 1626 -0.02005370402745561
63 1684.247512604481 1626 0.03582257847754043
64 1779.186911390872 1828 -0.02670300252140491
65 1878.350490862376 1828 0.02754403220042451
66 1981.881346097857 2030 -0.02370377039514422
67 2089.926110393341 2030 0.02952025142529100
68 2202.635016356147 2268 -0.02882053952550826
69 2320.161957708406 2268 0.02299909951869768
Perhaps it is easy to finetune this much more with not too much effort.
[update]: a first finetuning: a^ (k) = sinh°05( (1.018 k -0.174)/2)
See the pictures with the already improved data.
Absolute values:
Ratios: [update]: upps, after looking behind index k>150 things are no more looking so nice... :-(
Technical details:
I computed the powerseries for the half-iterate from the sqrt of the carlemanmatrix for sinh to 128 terms.
The convergence-radius is zero, but for x near zero one can evaluate the first 128 terms of the powerseries and get a value, which reinserted gives indeed the one-time-iterate to, say 20 or 30 dec digits precision.
So high arguments x of the sinh°05(x) must be transferred by asinh()-iterations sufficiently near towards zero (say 0<x<0.5 or x<0.2 for k~80) , then the powerseries can be evaluated with that x, and then the result must be retransferred by appropriate sinh()-iterations.
I computed this with 400 digits internal precision and float algebra (although the square-root of the Carlemanmatrix can be determined in rational algebra).
Gottfried
(If someone needs it I can supply the Pari/GP-code)
Gottfried Helms, Kassel