06/28/2011, 07:17 AM
(This post was last modified: 07/02/2011, 01:43 AM by Cherrina_Pixie.)

Code:

`? init(exp(Pi()/2));loop`

base 4.81047738096535165547304

fixed point 0.E-68 + 1.00000000000000000000000*I

Pseudo Period 3.69464335841375533580710 + 1.06216001044294092389502*I

4 strm(s) out of 12 sexp(z) generates 36 Riemann samples, scnt= 43

8 rtrm(s) out of 18 riemaprx(z) generates 12 sexp samples

sexp(-0.5)= 0.44150846390775332819992735716755

6.315800093 Riemann/sexp binary precision bits I=0.1200000000*I

1=loopcount -0.005257090997 recenter/renorm 0.005021271902

18 strm(s) out of 18 sexp(z) generates 26 Riemann samples, scnt= 36

12 rtrm(s) out of 13 riemaprx(z) generates 19 sexp samples

sexp(-0.5)= 0.44146829736572151824153868728668

15.39341456 Riemann/sexp binary precision bits I=0.1200000000*I

2=loopcount -0.000006612199794 recenter/renorm 0.00001187700815

22 strm(s) out of 28 sexp(z) generates 38 Riemann samples, scnt= 50

19 rtrm(s) out of 19 riemaprx(z) generates 22 sexp samples

sexp(-0.5)= 0.44146826345089157095194288166600

23.36284166 Riemann/sexp binary precision bits I=0.1200000000*I

3=loopcount -0.00000002312286847 recenter/renorm 0.00000007284067824

33 strm(s) out of 33 sexp(z) generates 50 Riemann samples, scnt= 62

25 rtrm(s) out of 25 riemaprx(z) generates 29 sexp samples

sexp(-0.5)= 0.44146826265404109196819015909251

31.45371224 Riemann/sexp binary precision bits I=0.1200000000*I

4=loopcount -1.197253818 E-10 recenter/renorm 1.162183490 E-10

40 strm(s) out of 43 sexp(z) generates 64 Riemann samples, scnt= 75

32 rtrm(s) out of 32 riemaprx(z) generates 30 sexp samples

sexp(-0.5)= 0.44146826265346684519672624211813

39.80570360 Riemann/sexp binary precision bits I=0.1200000000*I

5=loopcount -3.150872206 E-13 recenter/renorm 7.227756425 E-13

45 strm(s) out of 45 sexp(z) generates 80 Riemann samples, scnt= 88

40 rtrm(s) out of 40 riemaprx(z) generates 35 sexp samples

sexp(-0.5)= 0.44146826265345961129724099420262

48.14861781 Riemann/sexp binary precision bits I=0.1200000000*I

6=loopcount -1.151385006 E-15 recenter/renorm 1.259558322 E-15

52 strm(s) out of 52 sexp(z) generates 94 Riemann samples, scnt= 100

47 rtrm(s) out of 47 riemaprx(z) generates 38 sexp samples

sexp(-0.5)= 0.44146826265345960793409283844758

56.61697584 Riemann/sexp binary precision bits I=0.1200000000*I

7=loopcount -2.738837756 E-18 recenter/renorm 6.799954147 E-18

57 strm(s) out of 57 sexp(z) generates 110 Riemann samples, scnt= 113

55 rtrm(s) out of 55 riemaprx(z) generates 42 sexp samples

sexp(-0.5)= 0.44146826265345960787456889962878

65.05123526 Riemann/sexp binary precision bits I=0.1200000000*I

8=loopcount -7.703853099 E-21 recenter/renorm 1.516819744 E-20

63 strm(s) out of 63 sexp(z) generates 124 Riemann samples, scnt= 126

62 rtrm(s) out of 62 riemaprx(z) generates 46 sexp samples

sexp(-0.5)= 0.44146826265345960787455655053558

73.11307204 Riemann/sexp binary precision bits I=0.1200000000*I

9=loopcount -2.263257063 E-23 recenter/renorm 8.389515433 E-23

69 strm(s) out of 69 sexp(z) generates 138 Riemann samples, scnt= 139

69 rtrm(s) out of 69 riemaprx(z) generates 49 sexp samples

sexp(-0.5)= 0.44146826265345960787455568662140

81.22151804 Riemann/sexp binary precision bits I=0.1200000000*I

10=loopcount -1.148962259 E-25 recenter/renorm 1.542482215 E-25

73 strm(s) out of 73 sexp(z) generates 154 Riemann samples, scnt= 151

77 rtrm(s) out of 77 riemaprx(z) generates 52 sexp samples

sexp(-0.5)= 0.44146826265345960787455568616458

89.35146101 Riemann/sexp binary precision bits I=0.1200000000*I

11=loopcount -2.948891538 E-28 recenter/renorm 1.148593582 E-27

78 strm(s) out of 78 sexp(z) generates 168 Riemann samples, scnt= 164

84 rtrm(s) out of 84 riemaprx(z) generates 56 sexp samples

sexp(-0.5)= 0.44146826265345960787455568615250

92.04321478 Riemann/sexp binary precision bits I=0.1200000000*I

12=loopcount 2.894810870 E-29 recenter/renorm 2.344784572 E-28

84 strm(s) out of 84 sexp(z) generates 172 Riemann samples, scnt= 168

86 rtrm(s) out of 86 riemaprx(z) generates 56 sexp samples

sexp(-0.5)= 0.44146826265345960787455568615249

92.01407805 Riemann/sexp binary precision bits I=0.1200000000*I

13=loopcount 3.046137094 E-29 recenter/renorm 2.376219052 E-28

UNEXPECTED LOSS: curprecision<lastprecision. EXITING 92.014078053342056762222450521195

I ran through the loops for <sexp> of base ~4.81 and somehow, the indeterminacy of the 13th loop exceeded that of the 12th loop. Is there a way to solve this issue without changing the base? I'm not exactly certain about the possible consequences of this, other than the likely limit of precision... is a result like this 'normal' for larger bases?