uniqueness by the absense of bending points with respect to z in
sexp(slog(z) + r) for positive z and r.
( i use tet for 'my' sexp further )
let
tet(slog(x)) = x
tet(0) = 0 = slog(0)
consider
tet(slog(z) + r)
take derivate with respect to z.
tet'(slog(z) + r) x 1/tet'(slog(z))
take derivate with respect to z.
tet''(slog(z)+r)/tet'(slog(z))^2 - (tet'(slog(z)+r)) * tet''(slog(z))/tet'(slog(z))^3
hence
tet''(slog(z)+r)/tet'(slog(z))^2 = (tet'(slog(z)+r)) * tet''(slog(z))/tet'(slog(z))^3
thus
tet''(slog(z)+r) = tet'(slog(z)+r) * tet''(slog(z))/tet'(slog(z))
hence solve for positive z :
tet''(z+r) = tet'(z+r) * tet''(z)/tet'(z)
make symmetric
tet''(z+r)/tet'(z+r) = tet''(z)/tet'(z)
notice that if a z exists , another one must exist.
thus if for some r , a z exists , there exist oo z solutions.
take integral on both sides ( this step may be a bit dubious ? )
log(tet'(z+r)) + A = log(tet'(z)) + B
hence bending points in
sexp(slog(z) + r) correspond to bending points in sexp(z).
thus
all ( analytic ) sexp(z) with sexp(0) = 0 and positive real to positive real ,
without bending points are identical !!
headscratch ...
regards
sexp(slog(z) + r) for positive z and r.
( i use tet for 'my' sexp further )
let
tet(slog(x)) = x
tet(0) = 0 = slog(0)
consider
tet(slog(z) + r)
take derivate with respect to z.
tet'(slog(z) + r) x 1/tet'(slog(z))
take derivate with respect to z.
tet''(slog(z)+r)/tet'(slog(z))^2 - (tet'(slog(z)+r)) * tet''(slog(z))/tet'(slog(z))^3
hence
tet''(slog(z)+r)/tet'(slog(z))^2 = (tet'(slog(z)+r)) * tet''(slog(z))/tet'(slog(z))^3
thus
tet''(slog(z)+r) = tet'(slog(z)+r) * tet''(slog(z))/tet'(slog(z))
hence solve for positive z :
tet''(z+r) = tet'(z+r) * tet''(z)/tet'(z)
make symmetric
tet''(z+r)/tet'(z+r) = tet''(z)/tet'(z)
notice that if a z exists , another one must exist.
thus if for some r , a z exists , there exist oo z solutions.
take integral on both sides ( this step may be a bit dubious ? )
log(tet'(z+r)) + A = log(tet'(z)) + B
hence bending points in
sexp(slog(z) + r) correspond to bending points in sexp(z).
thus
all ( analytic ) sexp(z) with sexp(0) = 0 and positive real to positive real ,
without bending points are identical !!
headscratch ...
regards