Exotic fixpoint formulas
#1
I want to point out that fixpoint methods are usually based on formula's like koenigs or the higher order taylor analogues.

So for instance with hyperbolic attracting fixpoint at 0 :
 
f(x) = 0 + a x + b x^2 + ...

with 0 < a < 1

f^[z](x) = lim f^[-m]( a^z f^[m](x) )

This used the linear taylor polynomial a x for f(x).

A faster converging method is to use iterations of a x + b x^2 ( mod x^3 if you want to trade speed for kinda closed form ).

Although this works nice it gives little insight.

But we can use taylor's theorem to express f(x) in terms of its derivatives and this gives better insights sometimes.


As an example I take again a ' linear approximation / method '.

f(x) = x/( 1 + ln(1+x) )

Now we clearly understand the approximation below is good and intuitive :

f^[2](x) = x/( 1 + ln(1+x) )^2



In general

f(x) = x * g(x)

g(x) = f(x)/x

Notice if f(x) = 0 + a x + ...  
Then g(x) = a + ...


f^[z](x) = lim f^[-m]( (f(x)/x)^z f^[m](x) )


Higher order variants are also possible.

I rarely see this investigated.
Ofcourse regions of convergeance , branches and functional equation far away from the fixpoint may differ.
But that is also interesting.

But these are also analytic so are in the same category.
In fact they are the same functions but with different regions of convergeance , convergeance speed etc.
They even share the semi-group iso in general.




As example say 

f(x) = x/( 1 + ln(1+x) )

f^[z](x) = lim f^[-m](  (1 + ln(1+x))^z   f^[m](x) )


Or for

 https://tetrationforum.org/showthread.php?tid=1750

f(x) = exp(x) - exp(-3/5 x)

f^[z](x) = lim f^[m](  ( (exp(x) - exp(-3/5 x))/x )^z   f^[-m](x) )

( notice the signs of m are switched because f(x) is repelling here.  The inverse of f(x) has no simple closed form hence the reason )

All in all it is not all that different, but the viewpoint and insight makes all the difference.

Keep in mind to use some common sense just as with the other methods.
For instance if x is large and m is small and z is large , this probably does not give a good approximation yet and requires more work and/or iterations and/or analytic continuation.

As a consequence I write :


exp^[z](x) = lim ln^[m] (  f^[2m](  ( (exp(x) - exp(-3/5 x))/x )^z   f^[-2m](exp^[m](x)) ) )



regards

tommy1729
Reply
#2
Also Bo explains here a generalization of hyperbolic and parabolic fixpoint methods due to Lévy.

This also can be generalized in a similar way.

see :

https://tetrationforum.org/showthread.php?tid=471


regards

tommy1729
Reply
#3
Reminder :

Quadratic approximation for attracting function with fixpoint at 0 :


f(x) = a x + k x^2 + ...

f^[t](x) = a^t x + k a^(t-1) ( a^t - 1 )/(a-1) x^2.


Also here were some ideas :


https://tetrationforum.org/showthread.php?tid=951


regards

tommy1729
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  New formulas for iteration Nolord 0 146 09/18/2024, 04:02 PM
Last Post: Nolord
  from formulas to pari implementations Xorter 3 7,456 06/04/2020, 02:08 PM
Last Post: Xorter
  Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... Gottfried 23 69,985 10/20/2017, 08:32 PM
Last Post: Gottfried
  (Again) fixpoint outside Period tommy1729 2 7,582 02/05/2017, 09:42 AM
Last Post: tommy1729
  Polygon cyclic fixpoint conjecture tommy1729 1 6,276 05/18/2016, 12:26 PM
Last Post: tommy1729
  The " outside " fixpoint ? tommy1729 0 3,955 03/18/2016, 01:16 PM
Last Post: tommy1729
  2 fixpoint pairs [2015] tommy1729 0 4,342 02/18/2015, 11:29 PM
Last Post: tommy1729
  [2014] The secondary fixpoint issue. tommy1729 2 9,137 06/15/2014, 08:17 PM
Last Post: tommy1729
  Simple method for half iterate NOT based on a fixpoint. tommy1729 2 8,942 04/30/2013, 09:33 PM
Last Post: tommy1729
  Non-recursive coefficient formulas. Can the Riemann mapping be constructed? mike3 0 4,872 06/04/2011, 12:17 AM
Last Post: mike3



Users browsing this thread: 1 Guest(s)