Tetration convergence
#1
\[(1+a)^n = \sum_{k=0}^n {n \choose k}a^k \]

Consider the following transseries


\[\text{Let } n=\;^{m-1}(1+a) \text{ with } a\in\mathbb{N}\]

\[^m(1+a) =(1+a)^{(^{m-1}(1+a))} = \sum_{k=0}^{^{m-1}(1+a)} {{^{m-1}(1+a)} \choose k}a^k\]

\[{{^{m-1}(1+a)} \choose k} = 0 \text{ for } ^{m-1}(1+a)>k\]

\[\text{Thus } ^m(1+a) \text{ is convergent.}\]
Daniel
Reply
#2
why not use the gamma function and generalized binomium theorem ?

Your condition of being 0 fails then.
But we get the usual interpretation of powers.

And things are analytic.

Or maybe this is about rounding to the closest integer ?
And thereby making a shortcut computation ?


regards

tommy1729
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  Flow and convergence Daniel 3 2,264 03/03/2023, 01:17 PM
Last Post: tommy1729
  Iterated function convergence Daniel 1 1,829 12/18/2022, 01:40 AM
Last Post: JmsNxn
  Integer tetration and convergence speed rules marcokrt 5 17,417 12/21/2011, 06:21 PM
Last Post: marcokrt
  What is the convergence radius of this power series? JmsNxn 9 33,026 07/04/2011, 09:08 PM
Last Post: JmsNxn
  Nowhere analytic superexponential convergence sheldonison 14 44,392 02/10/2011, 07:22 AM
Last Post: sheldonison
  using the sum , hoping for convergence tommy1729 4 13,326 08/28/2010, 12:10 PM
Last Post: tommy1729



Users browsing this thread: 1 Guest(s)