New mathematical object - hyperanalytic function arybnikov Junior Fellow Posts: 3 Threads: 1 Joined: Dec 2019 12/30/2019, 04:18 PM New mathematical object - hyperanalytic function is introduced. The convergence of hyperanalytic functions is substantially above than the convergence of analytic functions. A specific sample of hyperanalytic function is the reticulum function (RF). This function describes the reticulum space-time. RF can't be decomposed into the Fourier series and, therefore, RF does not provide the conservation of parity as the analytic functions do. Thanks to this, the RF can be decomposed in an endless series of two primitive hyperanalytic functions by sequential attempts of decomposition in the even and odd functions. The unique parameter of such series is the fine structure constant. It allows combine all fundamental interactions into the Naturally-Unified Quantum Theory of Interactions. The price of such quantum unification is the reticulum space-time. Additional material: http://www.gaussianfunction.com bo198214 Administrator Posts: 1,624 Threads: 103 Joined: Aug 2007 12/31/2019, 11:04 PM How is this related to tetration? arybnikov Junior Fellow Posts: 3 Threads: 1 Joined: Dec 2019 01/01/2020, 10:51 PM (12/31/2019, 11:04 PM)bo198214 Wrote: How is this related to tetration? Directly. For example, function Code:\mathbb{R}(x)=\frac{1}{\sigma\sqrt{2\pi}}\sum_{n=-\infty}^{\infty}e^{-\frac{1}{2}(\frac{x-nL}{\sigma})^{2}} has approximation Code:A\left(x\right)=\frac{\mathbb{R}_{max}+\mathbb{R}_{min}}{2}(1+2\alpha cos\left(2\pi x\right)) +2\sum_{i=1}^{\infty}\alpha^{4^{i}}\left(cos\left(2i\times 2\pi x\right)-1\right)+\frac{2}{\mathbb{W}_{max}}\sum_{i=1}^{\infty}\alpha^{9{i}^2}\left(cos\left(3 \times (2i-1)\times 2\pi x\right)-cos\left((2i-1) \times 2\pi  x\right)\right), where Code:\alpha\left(\sigma\right)=\frac{1}{2}\frac{\mathbb{R}_{max}-\mathbb{R}_{min}}{\mathbb{R}_{max}+\mathbb{R}_{min}}. Daniel Long Time Fellow Posts: 279 Threads: 94 Joined: Aug 2007 01/02/2020, 12:15 AM (01/01/2020, 10:51 PM)arybnikov Wrote: (12/31/2019, 11:04 PM)bo198214 Wrote: How is this related to tetration? Directly. For example, function $\mathbb{R}(x)=\frac{1}{\sigma\sqrt{2\pi}}\sum_{n=-\infty}^{\infty}e^{-\frac{1}{2}(\frac{x-nL}{\sigma})^{2}}$ has approximation $A\left( x \right)=\frac{\mathbb{R}_{max}+\mathbb{R}_{min}}{2}(1+2\alpha cos(2\pi x )$ {Please fix, doesn't parse} $+2\sum_{i=1}^{\infty} \alpha^{4^i}( \cos ( 2i \times 2\pi x ) -1 ) +\frac{2}{\mathbb{W}_{max}}\sum_{i=1}^{\infty}\alpha^{9{i}^2}\left( cos\left(3 \times (2i-1)\times 2\pi x \right) -cos\left( (2i-1) \times 2\pi x \right) \right)$, where $\alpha\left(\sigma\right)=\frac{1}{2}\frac{\mathbb{R}_{max}-\mathbb{R}_{min}}{\mathbb{R}_{max}+\mathbb{R}_{min}}$. Daniel arybnikov Junior Fellow Posts: 3 Threads: 1 Joined: Dec 2019 01/02/2020, 01:38 AM (01/02/2020, 12:15 AM)Daniel Wrote: (01/01/2020, 10:51 PM)arybnikov Wrote: (12/31/2019, 11:04 PM)bo198214 Wrote: How is this related to tetration? Directly. For example, function $\mathbb{R}(x)=\frac{1}{\sigma\sqrt{2\pi}}\sum_{n=-\infty}^{\infty}e^{-\frac{1}{2}(\frac{x-nL}{\sigma})^{2}}$ has approximation $A\left( x \right)=\frac{\mathbb{R}_{max}+\mathbb{R}_{min}}{2}(1+2\alpha cos(2\pi x ))$ $+2\sum_{i=1}^{\infty} \alpha^{4^i}( cos(2i \times 2 \pi x )-1)+\frac{2}{\mathbb{W}_{max}}\sum_{i=1}^{\infty}\alpha^{9i^2}\left( cos\left( 3 \times (2i-1) 2\pi x \right) - cos\left( (2i-1) 2\pi x \right) \right)$, where $\alpha\left(\sigma\right)=\frac{1}{2}\frac{\mathbb{R}_{max}-\mathbb{R}_{min}}{\mathbb{R}_{max}+\mathbb{R}_{min}}$. Unfortunately I still have problem with $\rightarrow$ and [?]. « Next Oldest | Next Newest »

 Possibly Related Threads… Thread Author Replies Views Last Post Is there any ways to compute iterations of a oscillating function ? Shanghai46 5 192 10/16/2023, 03:11 PM Last Post: leon Anyone have any ideas on how to generate this function? JmsNxn 3 790 05/21/2023, 03:30 PM Last Post: Ember Edison [MSE] Mick's function Caleb 1 534 03/08/2023, 02:33 AM Last Post: Caleb [special] binary partition zeta function tommy1729 1 444 02/27/2023, 01:23 PM Last Post: tommy1729 [NT] Extending a Jacobi function using Riemann Surfaces JmsNxn 2 716 02/26/2023, 08:22 PM Last Post: tommy1729 toy zeta function tommy1729 0 383 01/20/2023, 11:02 PM Last Post: tommy1729 geometric function theory ideas tommy1729 0 435 12/31/2022, 12:19 AM Last Post: tommy1729 Iterated function convergence Daniel 1 668 12/18/2022, 01:40 AM Last Post: JmsNxn Fibonacci as iteration of fractional linear function bo198214 48 13,608 09/14/2022, 08:05 AM Last Post: Gottfried Constructing an analytic repelling Abel function JmsNxn 0 727 07/11/2022, 10:30 PM Last Post: JmsNxn

Users browsing this thread: 1 Guest(s)