Posts: 3
Threads: 1
Joined: Dec 2019
New mathematical object - hyperanalytic function is introduced. The convergence of hyperanalytic functions is substantially above than the convergence of analytic functions. A specific sample of hyperanalytic function is the reticulum function (RF). This function describes the reticulum space-time. RF can't be decomposed into the Fourier series and, therefore, RF does not provide the conservation of parity as the analytic functions do. Thanks to this, the RF can be decomposed in an endless series of two primitive hyperanalytic functions by sequential attempts of decomposition in the even and odd functions. The unique parameter of such series is the fine structure constant.
It allows combine all fundamental interactions into the Naturally-Unified Quantum Theory of Interactions. The price of such quantum unification is the reticulum space-time.
Additional material:
http://www.gaussianfunction.com
Posts: 1,624
Threads: 103
Joined: Aug 2007
How is this related to tetration?
Posts: 3
Threads: 1
Joined: Dec 2019
(12/31/2019, 11:04 PM)bo198214 Wrote: How is this related to tetration?
Directly.
For example, function
Code:
\mathbb{R}(x)=\frac{1}{\sigma\sqrt{2\pi}}\sum_{n=-\infty}^{\infty}e^{-\frac{1}{2}(\frac{x-nL}{\sigma})^{2}}
has approximation
Code:
A\left(x\right)=\frac{\mathbb{R}_{max}+\mathbb{R}_{min}}{2}(1+2\alpha cos\left(2\pi x\right))
+2\sum_{i=1}^{\infty}\alpha^{4^{i}}\left(cos\left(2i\times 2\pi x\right)-1\right)+\frac{2}{\mathbb{W}_{max}}\sum_{i=1}^{\infty}\alpha^{9{i}^2}\left(cos\left(3 \times (2i-1)\times 2\pi x\right)-cos\left((2i-1) \times 2\pi x\right)\right),
where
Code:
\alpha\left(\sigma\right)=\frac{1}{2}\frac{\mathbb{R}_{max}-\mathbb{R}_{min}}{\mathbb{R}_{max}+\mathbb{R}_{min}}.
Posts: 279
Threads: 94
Joined: Aug 2007
(01/01/2020, 10:51 PM)arybnikov Wrote: (12/31/2019, 11:04 PM)bo198214 Wrote: How is this related to tetration?
Directly.
For example, function
\( \mathbb{R}(x)=\frac{1}{\sigma\sqrt{2\pi}}\sum_{n=-\infty}^{\infty}e^{-\frac{1}{2}(\frac{x-nL}{\sigma})^{2}} \)
has approximation
\( A\left( x \right)=\frac{\mathbb{R}_{max}+\mathbb{R}_{min}}{2}(1+2\alpha cos(2\pi x ) \)
{Please fix, doesn't parse}
\( +2\sum_{i=1}^{\infty} \alpha^{4^i}( \cos ( 2i \times 2\pi x ) -1 )
+\frac{2}{\mathbb{W}_{max}}\sum_{i=1}^{\infty}\alpha^{9{i}^2}\left( cos\left(3 \times (2i-1)\times 2\pi x \right)
-cos\left( (2i-1) \times 2\pi x \right) \right) \),
where
\( \alpha\left(\sigma\right)=\frac{1}{2}\frac{\mathbb{R}_{max}-\mathbb{R}_{min}}{\mathbb{R}_{max}+\mathbb{R}_{min}} \).
Daniel
Posts: 3
Threads: 1
Joined: Dec 2019
(01/02/2020, 12:15 AM)Daniel Wrote: (01/01/2020, 10:51 PM)arybnikov Wrote: (12/31/2019, 11:04 PM)bo198214 Wrote: How is this related to tetration?
Directly.
For example, function
\( \mathbb{R}(x)=\frac{1}{\sigma\sqrt{2\pi}}\sum_{n=-\infty}^{\infty}e^{-\frac{1}{2}(\frac{x-nL}{\sigma})^{2}} \)
has approximation
\( A\left( x \right)=\frac{\mathbb{R}_{max}+\mathbb{R}_{min}}{2}(1+2\alpha cos(2\pi x )) \)
\( +2\sum_{i=1}^{\infty} \alpha^{4^i}( cos(2i \times 2 \pi x )-1)+\frac{2}{\mathbb{W}_{max}}\sum_{i=1}^{\infty}\alpha^{9i^2}\left( cos\left( 3 \times (2i-1) 2\pi x \right) - cos\left( (2i-1) 2\pi x \right) \right) \),
where
\( \alpha\left(\sigma\right)=\frac{1}{2}\frac{\mathbb{R}_{max}-\mathbb{R}_{min}}{\mathbb{R}_{max}+\mathbb{R}_{min}} \).
Unfortunately I still have problem with \( \rightarrow \) and [?].