tommy's simple solution ln^[n](2sinh^[n+x](z))
#1
Consider f(z,x) = Lim(n --> oo)  ln^[n] ( 2sinh^[n+x] (z) ).

This simple Function satisfies exp(f(z,x)) = f(z,x+1).

So we have a simple superfunction that requires only the real iterations of 2sinh(z).

Notice lim ( n --> oo) 2sinh^[n]( 2^(z-n)) is a superf for 2sinh.

f(z,x) could be analytic for re(z) > 1.

Also , is it really new ?

Or is it the ( analytic continuation ? ) of the 2sinh method ?
It sure is very similar.

----

Mick wondered if F^[n] ( g^[n] ) is analytic for f = sqrt and g = x^2 +1.

---

Regards

Tommy1729
Reply
#2
(01/16/2017, 01:29 PM)tommy1729 Wrote: Consider f(z,x) = Lim(n --> oo)  ln^[n] ( 2sinh^[n+x] (z) ).

This simple Function satisfies exp(f(z,x)) = f(z,x+1).
...
Or is it the ( analytic continuation ? ) of the 2sinh method ?
consider ignoring z, and using the formal inverse Schroeder series (below) for putting 2sinh^[ox] into correspondence with 2^x. 
Then your sexp2sinh/TommySexp function is exactly:
\( k=f^{-1}(1);\;\;\;\text{TommySexp}(x)=f(k+x) \)
k=0.0678383660707522254065
This also happens to be the definition I personally used for your TommySexp function, but numerically, they are all exactly the same; infinitely differentiable but conjectured nowhere analytic.  
TommySexp(-0.5)=0.498743364531671
Kneser's sexp(-0.5)= 0.498563287941114

Since f(x) is only defined at the real axis, the term analytic continuation has no meaning.

"Mick wondered if F^[n] ( g^[n] ) is analytic for f = sqrt and g = x^2 +1", 
yes it is.  So long as you restrict yourself to the region where |g^[n]|>>1 then it will converge.  Have Mick ask on Mathstack if he wants more details.

Code:
2sinh^[0] = formal2sinh_ischroeder(1) = 1.05804904330694441126
{formal2sinh_ischroeder=
 x +
+x^ 3*  1/18
+x^ 5*  13/5400
+x^ 7*  1193/14288400
+x^ 9*  219983/87445008000
+x^11*  225002297/3280062250080000
+x^13*  3624242332901/2095369366596105600000
+x^15*  294797208996087793/7208971629918239589408000000
+x^17*  532541776280711150089/581464560943620715682280960000000
+x^19*  4423796286922654904342141267/225896613039975363731770463347368960000000 ...}
- Sheldon
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  " tommy quaternion " tommy1729 41 13,119 05/23/2023, 07:56 PM
Last Post: tommy1729
  [2sinh] using exp(x) - exp(-3/5 x) tommy1729 1 39 05/16/2023, 11:32 PM
Last Post: tommy1729
  Simple limit approximation to exp(x) tommy1729 0 32 05/16/2023, 11:13 PM
Last Post: tommy1729
  [2sinh] exp(x) - exp( - (e-1) x), Low Base Constant (LBC) 1.5056377.. tommy1729 3 132 04/30/2023, 01:22 AM
Last Post: tommy1729
  [MSE too] more thoughts on 2sinh tommy1729 1 170 02/26/2023, 08:49 PM
Last Post: tommy1729
  [NT] Caleb stuff , mick's MSE and tommy's diary functions tommy1729 0 138 02/26/2023, 08:37 PM
Last Post: tommy1729
  tommy's "linear" summability method tommy1729 15 909 02/10/2023, 03:55 AM
Last Post: JmsNxn
  Maybe the solution at z=0 to f(f(z))=-z+z^2 Leo.W 9 546 01/24/2023, 12:37 AM
Last Post: tommy1729
  Semi-group iso , tommy's limit fix method and alternative limit for 2sinh method tommy1729 1 340 12/30/2022, 11:27 PM
Last Post: tommy1729
  tommy's group addition isomo conjecture tommy1729 1 440 09/16/2022, 12:25 PM
Last Post: tommy1729



Users browsing this thread: 1 Guest(s)