exp^[1/2](x) uniqueness from 2sinh ?
#1
A possible uniqueness critertion for exp^[1/2](x) ?

For x > 1 and any integer n >= 0 :

1) e/n! > d^n exp^[1/2](x)/d^n x @ x = 1 > 0.

2) 2sinh^[1/2](x) + d 2sinh^[1/2](x)/dx - exp(-x) > exp^[1/2](x) > 2sinh^[1/2](x).
( 2sinh^[1/2](x) is computed with the koenigs function )

3) exp^[1/2](z) is holomorphic for Re(z) > 1/2.

If the uniqueness fails the question is if the conditions are too strong or too weak.

And if it can be improved.

regards

tommy1729
Reply
#2
Hmm The conditions must fail because they imply that exp^[1/2](x) is entire which it is not.

Not sure how to bound the derivatives then ...

reduce condition 1) to d^n exp^[1/2](x)/d^n x @ x = 1 > 0 ?

regards

tommy1729
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  [2sinh] using exp(x) - exp(-3/5 x) tommy1729 2 3,031 06/18/2023, 11:49 PM
Last Post: tommy1729
  [2sinh] exp(x) - exp( - (e-1) x), Low Base Constant (LBC) 1.5056377.. tommy1729 3 4,615 04/30/2023, 01:22 AM
Last Post: tommy1729
  [MSE too] more thoughts on 2sinh tommy1729 1 2,466 02/26/2023, 08:49 PM
Last Post: tommy1729
  Semi-group iso , tommy's limit fix method and alternative limit for 2sinh method tommy1729 1 3,790 12/30/2022, 11:27 PM
Last Post: tommy1729
Question The Etas and Euler Numbers of the 2Sinh Method Catullus 2 4,046 07/18/2022, 10:01 AM
Last Post: Catullus
Question A Limit Involving 2sinh Catullus 0 2,346 07/17/2022, 06:15 AM
Last Post: Catullus
  Uniqueness of fractionally iterated functions Daniel 7 8,628 07/05/2022, 01:21 AM
Last Post: JmsNxn
  Reviving an old idea with 2sinh. tommy1729 7 7,323 06/28/2022, 02:14 PM
Last Post: tommy1729
  Universal uniqueness criterion? bo198214 57 160,429 06/28/2022, 12:00 AM
Last Post: JmsNxn
  A question concerning uniqueness JmsNxn 4 15,553 06/10/2022, 08:45 AM
Last Post: Catullus



Users browsing this thread: 1 Guest(s)