Tetration Forum

Full Version: Terse Schroeder & Abel function code
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
The following provides the Schroeder and Abel functions in Mathematica using the support for solving recursive equations and Bell polynomials. The code takes about a hour to run for the first ten derivatives.
Code:
order=10;
H[0]=0;
H[1]=f'[0]^t ;
Do[H[max]=First[r[t]/.RSolve[{r[0]==0,r[t]==Sum[Derivative[k][f][0]BellY[max,k,Table[H[j]/.t->t-1,{j,max}]],{k,2,max}]+ f'[0] r[t-1]},r[t],t]],{max,2,order}];
Schroeder=f'[0]^t z+Sum[1/k! H[k]z^k,{k,2,order}]
Abel=Limit[Schroeder,{f'[0]->1}]
The Pari/GP code for Bell polynomials is
Code:
  Bell(k,n=-1)=
  { my(x, v, dv, var = i->eval(Str("X",i)));
 
    v = vector(k, i, if (i==1, 'E, var(i-1)));
    dv = vector(k, i, if (i==1, 'X*var(1)*'E, var(i)));
    x = diffop('E,v,dv,k) / 'E;
    if (n < 0, subst(x,'X,1), polcoef(x,n,'X));
  }

So to Mathematica code at the beginning of this thread can be migrated to Pari/GP.